Skip to content

Commit

Permalink
fix things
Browse files Browse the repository at this point in the history
  • Loading branch information
fjy committed Mar 26, 2014
1 parent 98b0efb commit 15af9ac
Show file tree
Hide file tree
Showing 4 changed files with 27 additions and 28 deletions.
2 changes: 0 additions & 2 deletions docs/content/Historical-Config.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,6 @@ druid.processing.numThreads=1
druid.segmentCache.locations=[{"path": "/tmp/druid/indexCache", "maxSize"\: 10000000000}]
```

Note: This will spin up a Historical node with the local filesystem as deep storage.

Production Configs
------------------
These production configs are using S3 as a deep store.
Expand Down
2 changes: 1 addition & 1 deletion publications/demo/druid_demo.aux
Original file line number Diff line number Diff line change
Expand Up @@ -18,14 +18,14 @@
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}The Need for Druid}{1}{subsection.1.1}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Architecture}{1}{section.2}}
\citation{abadi2008column}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces An overview of a Druid cluster and the flow of data through the cluster.}}{2}{figure.1}}
\newlabel{fig:cluster}{{1}{2}{An overview of a Druid cluster and the flow of data through the cluster}{figure.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Real-time Nodes}{2}{subsection.2.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Historical Nodes}{2}{subsection.2.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Broker Nodes}{2}{subsection.2.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Coordinator Nodes}{2}{subsection.2.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5}Query Processing}{2}{subsection.2.5}}
\citation{abadi2008column}
\citation{tomasic1993performance}
\citation{colantonio2010concise}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Sample sales data set.}}{3}{table.1}}
Expand Down
Binary file modified publications/demo/druid_demo.pdf
Binary file not shown.
51 changes: 26 additions & 25 deletions publications/demo/druid_demo.tex
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@
fast data aggregation, low latency data ingestion, and arbitrary data
exploration. The system combines a column-oriented storage layout, a
distributed, shared-nothing architecture, and an advanced indexing structure to
return queries on billion of rows in milliseconds. Druid is petabyte scale and
return queries on billions of rows in milliseconds. Druid is petabyte scale and
is deployed in production at several technology companies.
\end{abstract}

Expand Down Expand Up @@ -145,7 +145,7 @@ \subsection{The Need for Druid}
data (OLAP data) is commonly found in the business intelligence
space and the nature of the data tends to be very append heavy. Events typically
have three distinct components: a timestamp column indicating when the event
occurred, a set dimension columns indicating various attributes about the
occurred, a set of dimension columns indicating various attributes about the
event, and a set of metric columns containing values (usually numeric) that can
be aggregated. Queries are typically issued for the sum of some set of metrics,
filtered by some set of dimensions, over some span of time.
Expand All @@ -155,11 +155,11 @@ \subsection{The Need for Druid}
visualize event streams. Existing open source Relational Database Management
Systems, cluster computing frameworks, and NoSQL key/value stores were unable
to provide a low latency data ingestion and query platform for an interactive
dashboard. Queries needed to return fast enough that the data visualizations in
the dashboard could interactively update.
dashboard. Queries needed to return fast enough to allow the data
visualizations in the dashboard to update interactively.

In addition to the query latency needs, the system had to be multi-tenant and
highly available, as the dashboord is used in a highly concurrent environment.
highly available, as the dashboard is used in a highly concurrent environment.
Downtime is costly and many businesses cannot afford to wait if a system is
unavailable in the face of software upgrades or network failure. Finally,
Metamarkets also wanted to allow users and alerting systems to be able to make
Expand All @@ -168,9 +168,9 @@ \subsection{The Need for Druid}
react to potentially catastrophic occurrences in their systems.

The problems of data exploration, ingestion, and availability span multiple
industries. Since Druid was open sourced in October 2012, it been deployed as a
industries. Since Druid was open sourced in October 2012, it has been deployed as a
video, network monitoring, operations monitoring, and online advertising
analytics platform in multiple companies\footnote{\href{http://druid.io/druid.html}{http://druid.io/druid.html}}.
analytics platform at multiple companies\footnote{\href{http://druid.io/druid.html}{http://druid.io/druid.html}}.

\begin{figure*}
\centering
Expand All @@ -183,7 +183,7 @@ \section{Architecture}
A Druid cluster consists of different types of nodes and each node type is
designed to perform a specific set of things. We believe this design separates
concerns and simplifies the complexity of the system. The different node types
operate fairly independent of each other and there is minimal interaction among
operate fairly independently of each other and there is minimal interaction among
them. Hence, intra-cluster communication failures have minimal impact on data
availability. To solve complex data analysis problems, the different node
types come together to form a fully working system. The composition of and flow
Expand All @@ -194,10 +194,9 @@ \section{Architecture}
\subsection{Real-time Nodes}
Real-time nodes encapsulate the functionality to ingest and query event
streams. Events indexed via these nodes are immediately available for querying.
The nodes are only concerned with events for some small time range and
periodically hand off immutable batches of events they've collected over this
small time range to other nodes in the Druid cluster that are specialized in
dealing with batches of immutable events.
These nodes are only concerned with events for some small time range. They
periodically hand off batches of immutable events to other nodes in the Druid
cluster that are specialized in dealing with batches of immutable events.

Real-time nodes maintain an in-memory index buffer for all incoming events.
These indexes are incrementally populated as new events are ingested and the
Expand All @@ -211,13 +210,13 @@ \subsection{Real-time Nodes}
task merges these indexes together and builds an immutable block of data that
contains all the events that have ingested by a real-time node for some span of
time. We refer to this block of data as a ``segment". During the handoff stage,
a real-time node uploads this segment to a permanent backup storage, typically
a real-time node uploads this segment to permanent backup storage, typically
a distributed file system that Druid calls ``deep storage".

\subsection{Historical Nodes}
Historical nodes encapsulate the functionality to load and serve the immutable
blocks of data (segments) created by real-time nodes. In many real-world
workflows, most of the data loaded in a Druid cluster is immutable and hence,
workflows, most of the data loaded in a Druid cluster is immutable and hence
historical nodes are typically the main workers of a Druid cluster. Historical
nodes follow a shared-nothing architecture and there is no single point of
contention among the nodes. The nodes have no knowledge of one another and are
Expand Down Expand Up @@ -247,11 +246,11 @@ \subsection{Coordinator Nodes}
parameters and configurations. One of the key pieces of information located in
the MySQL database is a table that contains a list of all segments that should
be served by historical nodes. This table can be updated by any service that
creates segments, for example, real-time nodes.
creates segments, such as real-time nodes.

\subsection{Query Processing}
Data tables in Druid (called \emph{data sources}) are collections of
timestamped events and partitioned into a set of segments, where each segment
timestamped events partitioned into a set of segments, where each segment
is typically 5--10 million rows. Formally, we define a segment as a collection
of rows of data that span some period in time. Segments represent the
fundamental storage unit in Druid and replication and distribution are done at
Expand Down Expand Up @@ -322,7 +321,9 @@ \subsection{Query Capabilities}
Druid supports many types of aggregations including double sums, long sums,
minimums, maximums, and complex aggregations such as cardinality estimation and
approximate quantile estimation. The results of aggregations can be combined
in mathematical expressions to form other aggregations.
in mathematical expressions to form other aggregations. Druid supports
different query types ranging from simple aggregates for an interval time,
groupBys, and approximate top-K queries.

\section{Performance}
Druid runs in production at several organizations, and to briefly demonstrate its
Expand Down Expand Up @@ -365,11 +366,11 @@ \subsection{Query Performance}
distribution. Queries involving a single column are very frequent, and queries
involving all columns are very rare.

We also present Druid benchmarks on TPC-H data. Most TPC-H queries do
not directly apply to Druid, so we selected queries more typical of Druid's
workload to demonstrate query performance. As a comparison, we also provide the
results of the same queries using MySQL using the MyISAM engine (InnoDB was
slower in our experiments).
We also present Druid benchmarks on TPC-H data in Figure~\ref{fig:tpch_100g}.
Most TPC-H queries do not directly apply to Druid, so we selected queries more
typical of Druid's workload to demonstrate query performance. As a comparison,
we also provide the results of the same queries using MySQL using the MyISAM
engine (InnoDB was slower in our experiments).

We benchmarked Druid's scan rate at 53,539,211 rows/second/core for
\texttt{select count(*)} equivalent query over a given time interval and
Expand Down Expand Up @@ -397,7 +398,7 @@ \subsection{Data Ingestion Performance}

The latency measurements we presented are sufficient to address the our stated
problems of interactivity. We would prefer the variability in the latencies to
be less, which is still very possible to possible by adding additional
be less, which can be achieved by adding additional
hardware, but we have not chosen to do so because of cost concerns.

\section{Demonstration Details}
Expand All @@ -406,7 +407,7 @@ \section{Demonstration Details}
cluster, ingesting data, structuring a query, and obtaining results. We would
also like to showcase how to solve real-world data analysis problems with Druid
and demonstrate tools that can be built on top of it, including interactive
data visualizations, approximate algorithms, and machine learning components.
data visualizations, approximate algorithms, and machine-learning components.
We already use similar tools in production.

\subsection{Setup}
Expand All @@ -419,7 +420,7 @@ \subsection{Setup}
Druid cluster that contains several terabytes of Twitter data that we have been
collecting for over 2 years. There are over 3 billion tweets in this data set,
and new events are constantly being ingested. We will walk through a variety of
different queries to demonstrate Druid's arbitrary data exploration
different queries to demonstrate Druid's arbitrary data-exploration
capabilities.

Finally, we will teach users how to build a simple interactive dashboard on top
Expand Down

0 comments on commit 15af9ac

Please sign in to comment.