-
Notifications
You must be signed in to change notification settings - Fork 418
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
67b7218
commit be4853e
Showing
3 changed files
with
157 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
set -x | ||
|
||
gpu_list="${CUDA_VISIBLE_DEVICES:-0}" | ||
IFS=',' read -ra GPULIST <<< "$gpu_list" | ||
CHUNKS=8 | ||
|
||
for IDX in $(seq 0 $((CHUNKS-1))); do | ||
CUDA_VISIBLE_DEVICES=$IDX python ./scripts/main_inference_chunk.py \ | ||
--chunk_idx $IDX \ | ||
--num_chunks $CHUNKS & | ||
done | ||
|
||
wait |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import argparse | ||
import gc | ||
import os | ||
import os.path as osp | ||
import pdb | ||
|
||
import cv2 | ||
import numpy as np | ||
import torch | ||
from loguru import logger | ||
from tqdm import tqdm | ||
|
||
from sam2.build_sam import build_sam2_video_predictor | ||
|
||
|
||
def load_test_video_list(testing_list_path): | ||
with open(testing_list_path, 'r') as f: | ||
test_videos = [line.strip() for line in f.readlines()] | ||
return test_videos | ||
|
||
def load_gt(gt_path): | ||
""" | ||
Load the ground truth from the given path | ||
""" | ||
with open(gt_path, 'r') as f: | ||
gt = f.readlines() | ||
# bbox in first frame are prompts | ||
prompts = {} | ||
fid = 0 | ||
for line in gt: | ||
x, y, w, h = map(int, line.split(',')) | ||
prompts[fid] = ((x, y, x+w, y+h), 0) | ||
fid += 1 | ||
|
||
return prompts | ||
|
||
def get_ckpt_and_cfg(tracker_name, model_name): | ||
""" | ||
Get the checkpoint and config file for the given tracker and model | ||
""" | ||
assert tracker_name in ["sam2.1", "samurai"], "Invalid tracker name" | ||
assert model_name in ["tiny", "small", "base_plus", "large"], "Invalid model name" | ||
model_ckpt = f"sam2/checkpoints/sam2.1_hiera_{model_name}.pt" | ||
|
||
if model_name == "base_plus": | ||
model_cfg = f"configs/{tracker_name}/sam2.1_hiera_b+.yaml" | ||
else: | ||
model_cfg = f"configs/{tracker_name}/sam2.1_hiera_{model_name[0]}.yaml" | ||
|
||
return model_ckpt, model_cfg | ||
|
||
def split_list(video_list, num_chunks): | ||
""" | ||
Split a list into num_chunks chunks | ||
""" | ||
chunk_size = len(video_list) // num_chunks | ||
return [video_list[i:i+chunk_size] for i in range(0, len(video_list), chunk_size)] | ||
|
||
def inference_chunk(dataset_path, tracker_name, model_name, chunk_videos, result_folder): | ||
exp_name = "test" | ||
|
||
model_ckpt, model_cfg = get_ckpt_and_cfg(tracker_name, model_name) | ||
|
||
for vid, video in enumerate(chunk_videos): | ||
|
||
cat_name = video.split('-')[0] | ||
cid_name = video.split('-')[1] | ||
video_basename = video.strip() | ||
frame_folder = osp.join(dataset_path, cat_name, video.strip(), "img") | ||
num_frames = len(os.listdir(osp.join(dataset_path, cat_name, video.strip(), "img"))) | ||
height, width = cv2.imread(osp.join(frame_folder, "00000001.jpg")).shape[:2] | ||
|
||
logger.info(f"Running video [{vid+1}/{len(chunk_videos)}]: {video} with {num_frames} frames ({height}x{width})") | ||
|
||
predictor = build_sam2_video_predictor(model_cfg, model_ckpt, device="cuda:0") | ||
|
||
predictions = [] | ||
|
||
# Start processing frames | ||
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16): | ||
state = predictor.init_state(frame_folder, offload_video_to_cpu=True, offload_state_to_cpu=True) | ||
|
||
prompts = load_gt(osp.join(dataset_path, cat_name, video.strip(), "groundtruth.txt")) | ||
|
||
bbox, track_label = prompts[0] | ||
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, box=bbox, frame_idx=0, obj_id=0) | ||
|
||
for frame_idx, object_ids, masks in predictor.propagate_in_video(state): | ||
mask_to_vis = {} | ||
bbox_to_vis = {} | ||
|
||
assert len(masks) == 1 and len(object_ids) == 1, "Only one object is supported right now" | ||
for obj_id, mask in zip(object_ids, masks): | ||
mask = mask[0].cpu().numpy() | ||
mask = mask > 0.0 | ||
non_zero_indices = np.argwhere(mask) | ||
if len(non_zero_indices) == 0: | ||
bbox = [0, 0, 0, 0] | ||
else: | ||
y_min, x_min = non_zero_indices.min(axis=0).tolist() | ||
y_max, x_max = non_zero_indices.max(axis=0).tolist() | ||
bbox = [x_min, y_min, x_max-x_min, y_max-y_min] | ||
bbox_to_vis[obj_id] = bbox | ||
mask_to_vis[obj_id] = mask | ||
|
||
predictions.append(bbox_to_vis) | ||
|
||
os.makedirs(result_folder, exist_ok=True) | ||
with open(osp.join(result_folder, f'{video_basename}.txt'), 'w') as f: | ||
for pred in predictions: | ||
x, y, w, h = pred[0] | ||
f.write(f"{x},{y},{w},{h}\n") | ||
|
||
del predictor | ||
del state | ||
gc.collect() | ||
torch.clear_autocast_cache() | ||
torch.cuda.empty_cache() | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--dataset_path", type=str, default="data/LaSOT-ext") | ||
parser.add_argument("--tracker_name", type=str, default="samurai") | ||
parser.add_argument("--model_name", type=str, default="large") | ||
parser.add_argument("--chunk_idx", type=int, default=0) | ||
parser.add_argument("--num_chunks", type=int, default=1) | ||
parser.add_argument("--exp_name", type=str, default="test") | ||
parser.add_argument("--root_result_folder", type=str, default="results") | ||
args = parser.parse_args() | ||
|
||
test_videos = load_test_video_list("data/LaSOT-ext/testing_set.txt") | ||
chunk_video_list = split_list(test_videos, args.num_chunks) | ||
|
||
chunk_videos = chunk_video_list[args.chunk_idx] | ||
|
||
logger.info(f"Chunk ID: {args.chunk_idx}, Number of videos: {len(chunk_videos)} (from {chunk_videos[0]} to {chunk_videos[-1]})") | ||
|
||
exp_result_folder = osp.join(args.root_result_folder, args.tracker_name, f"{args.exp_name}_{args.model_name}") | ||
|
||
inference_chunk(args.dataset_path, args.tracker_name, args.model_name, chunk_videos, exp_result_folder) | ||
|
||
if __name__ == "__main__": | ||
main() |