Skip to content

Identify the Distribution of your Data

License

Notifications You must be signed in to change notification settings

yasserqureshi1/pyidd

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyIDD

Identify the Distribution of your Data
This package helps you for identifing the distribution of your data. For example if you want to know whether your data follow Normal distribution, you can use this package!

Installation

pip install pyidd

Usage

from pyidd import pyidd
import statsmodels.api as sm

# Load sample dataset (data is an one dimensional array)
data = sm.datasets.elnino.load_pandas().data.set_index('YEAR').values.ravel()

# verbose=0 means silent while fitting and verbose=1 means say anything you do while fitting
p = pyidd.PyIDD(verbose=1)
p.fit(data)

# After fitting, you can get distribution sorted by Sum of Squered Error that fit your data, so the first distribution is the distribution that is closer to your data
p.get_distributions()

# You can also plot distributions and your data to see this visualy. top=10 means that you want to plot top 10 distributions that match your data
p.plot(top=10)

Distributions

We use almost all scipy.stats continiuse distributions (Notics: The distributions that can not fit to your data get ignored). These distributions are listed below:

  • alpha
  • anglit
  • arcsine
  • argus
  • beta
  • betaprime
  • bradford
  • burr
  • burr12
  • cauchy
  • chi
  • chi2
  • cosine
  • crystalball
  • dgamma
  • dweibull
  • erlang
  • expon
  • exponnorm
  • exponweib
  • exponpow
  • f
  • fatiguelife
  • fisk
  • foldcauchy
  • foldnorm
  • frechet_r
  • frechet_l
  • genlogistic
  • gennorm
  • genpareto
  • genexpon
  • genextreme
  • gausshyper
  • gamma
  • gengamma
  • genhalflogistic
  • geninvgauss
  • gilbrat
  • gompertz
  • gumbel_r
  • gumbel_l
  • halfcauchy
  • halflogistic
  • halfnorm
  • halfgennorm
  • hypsecant
  • invgamma
  • invgauss
  • invweibull
  • johnsonsb
  • johnsonsu
  • kappa4
  • kappa3
  • ksone
  • kstwo
  • kstwobign
  • laplace
  • levy
  • levy_l
  • logistic
  • loggamma
  • loglaplace
  • lognorm
  • loguniform
  • lomax
  • maxwell
  • mielke
  • moyal
  • nakagami
  • ncx2
  • ncf
  • nct
  • norm
  • norminvgauss
  • pareto
  • pearson3
  • powerlaw
  • powerlognorm
  • powernorm
  • rdist
  • rayleigh
  • rice
  • recipinvgauss
  • semicircular
  • skewnorm
  • t
  • trapz
  • triang
  • truncexpon
  • truncnorm
  • tukeylambda
  • uniform
  • vonmises
  • vonmises_line
  • wald
  • weibull_min
  • weibull_max
  • wrapcauchy

About

Identify the Distribution of your Data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%