- import augmentation, learningModel, makeTFlite
- image augmentation from 'org_image' folder
- save augmented images to 'aug_image' folder
- start training the model
- save model weights file
- make TFLite file for mobile app(android)
- save .tflite file to tflite_result folder
- Augmentation.py: image augmentation
- With augmentation_module.py
-
(func) check_original_pixel_coordinate
- check pixel coordinates of original image
- if coordinates range in [0,415] : pass
- else coordinates range not in [0,415] : fix them and resave
-
(func) load_images_from_folder
- load original image using cv2
- return image arrays
-
(func) pixel_to_yolo
- convert pixel format coordinates range in [0,415] to yolo darknet format coordinates range in [0.0,1.0]
- check converted coordinates
- if coordinates range in [0.0,1.0] : pass
- else coordinates range not in [0.0,1.0] : fix them
- return class number and darknet format coordinates
-
(func) convert_original_txt_pixel_to_yolo
- save yolo darknet format coordinates to txt file
-
- LearningModel.py
- With learningModel_module.py
-
(func) file_len
- count the number of buildings and return it
-
(func) split_train_valid
- split dataset: ratio train(80%) and valid(20%)
-
(func) write_config_file
- write training config file
-
- darknet
- train yolov4-tiny model with darknet.exe
- save weights file
- tensorflow-yolov4-tflite
- convert weights file to .tflite file