Semantic segmentation of slum areas from high-resolution RGB images using three different architectures: U-Net, FPN, and Linknet, implemented in the segmentation_models. Slum prediction implementation using Smoothly-Blend-Image-Patches.
This repo provides RGB image and annotation sample for Jakarta. Users need to modify the directory path accordingly.
- segmentation_models
- keras == 2.10 or tensorflow == 2.10
- numpy
- rasterio
- matplotlib
- sklearn
- patchify
- albumentations
- Smoothly-Blend-Image-Patches
pip install -U segmentation-models
pip install -U --pre segmentation-models
pip install git+https://github.com/qubvel/segmentation_models
python image_patching.py
python split_train_val.py
python train_val_slum.py
python predict_slum.py
@article{Lumban-Gaol2023,
author = {Lumban-Gaol, Y. A. and Rizaldy, A. and Murtiyoso, A.},
title = {COMPARISON OF DEEP LEARNING ARCHITECTURES FOR THE SEMANTIC SEGMENTATION OF SLUM AREAS FROM SATELLITE IMAGES},
journal = {The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
volume = {XLVIII-1/W2-2023},
year = {2023},
pages = {1439--1444},
url = {https://isprs-archives.copernicus.org/articles/XLVIII-1-W2-2023/1439/2023/},
doi = {10.5194/isprs-archives-XLVIII-1-W2-2023-1439-2023}
}