Skip to content
forked from google/shaderc

A collection of tools, libraries and tests for shader compilation.

License

Notifications You must be signed in to change notification settings

yyzreal/shaderc

 
 

Repository files navigation

Shaderc

Linux Build Status Windows Build status Coverage Status

A collection of tools, libraries and tests for shader compilation. At the moment it includes:

  • glslc, a command line compiler for GLSL to SPIR-V, and
  • libshaderc a library API for doing the same.

Status

Shaderc is experimental, and subject to significant incompatible changes.

For licensing terms, please see the LICENSE file. If interested in contributing to this project, please see CONTRIBUTING.md

This is not an official Google product (experimental or otherwise), it is just code that happens to be owned by Google. That may change if Shaderc gains contributions from others. See the CONTRIBUTING.md file for more information. See also the AUTHORS and CONTRIBUTORS files.

File organization

  • android_test/ : a small Android application to verify compilation
  • cmake/: CMake utility functions and configuration for Shaderc
  • glslc/: an executable to compile GLSL to SPIR-V
  • libshaderc/: a library for compiling shader strings into SPIR-V
  • libshaderc_util/: a utility library used by multiple shaderc components
  • third_party/: third party open source packages; see below
  • utils/: utility scripts for Shaderc

Shaderc depends on glslang, the Khronos reference compiler for GLSL. Sometimes a change updates both Shaderc and glslang. In that case the glslang change will appear in google/glslang before it appears upstream in KhronosGroup/glslang. We intend to upstream all changes to glslang. We maintain the separate copy only to stage those changes for review, and to provide something for Shaderc to build against in the meantime. Please see DEVELOPMENT.howto.md for more details.

Shaderc depends on SPIRV-Tools for assembling and disassembling SPIR-V binaries.

Shaderc depends on the Google Mock testing framework.

In the following sections, $SOURCE_DIR is the directory you intend to clone Shaderc into.

Getting and building Shaderc

  1. Check out the source code:
git clone https://github.com/google/shaderc $SOURCE_DIR
cd $SOURCE_DIR/third_party
git clone https://github.com/google/googletest.git
git clone https://github.com/google/glslang.git
git clone https://github.com/KhronosGroup/SPIRV-Tools.git spirv-tools
cd $SOURCE_DIR/
  1. Ensure you have the requisite tools -- see the tools subsection below.

  2. Decide where to place the build output. In the following steps, we'll call it $BUILD_DIR. Any new directory should work. We recommend building outside the source tree, but it is also common to build in a (new) subdirectory of $SOURCE_DIR, such as $SOURCE_DIR/build.

4a) Build (and test) with Ninja on Linux or Windows:

cd $BUILD_DIR
cmake -GNinja -DCMAKE_BUILD_TYPE={Debug|Release|RelWithDebInfo} $SOURCE_DIR
ninja
ctest # optional

4b) Or build (and test) with MSVC on Windows:

cd $BUILD_DIR
cmake $SOURCE_DIR
cmake --build . --config {Release|Debug|MinSizeRel|RelWithDebInfo}
ctest -C {Release|Debug|MinSizeRel|RelWithDebInfo}

After a successful build, you should have a glslc executable somewhere under the $BUILD_DIR/glslc/ directory, as well as a libshaderc library somewhere under the $BUILD_DIR/libshaderc/ directory.

Tools you'll need

For building, testing, and profiling Shaderc, the following tools should be installed regardless of your OS:

  • CMake: for generating compilation targets.
  • Python: for running the test suite.

On Linux, the following tools should be installed:

  • gcov: for testing code coverage, provided by the gcc package on Ubuntu.
  • lcov: a graphical frontend for gcov, provided by the lcov package on Ubuntu.
  • genhtml: for creating reports in html format from lcov output, provided by the lcov package on Ubuntu.

On Windows, the following tools should be installed and available on your path:

  • Visual Studio 2013 Update 4 or later. Previous versions of Visual Studio will likely work but are untested.
  • Git - including the associated tools, Bash, diff.

Optionally, the following tools may be installed on any OS:

Bug tracking

We track bugs using GitHub -- click on the "Issues" button on the project's GitHub page.

Test coverage

On Linux, you can obtain test coverage as follows:

cd $BUILD_DIR
cmake -GNinja -DCMAKE_BUILD_TYPE=Debug -DENABLE_CODE_COVERAGE=ON $SOURCE_DIR
ninja
ninja report-coverage

Then the coverage report can be found under the $BUILD_DIR/coverage-report directory.

About

A collection of tools, libraries and tests for shader compilation.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 57.9%
  • Python 33.8%
  • C 4.8%
  • CMake 3.2%
  • Other 0.3%