Skip to content

Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习

License

Notifications You must be signed in to change notification settings

yzh-dev/MyTransferLearning-wangjindong-

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contributors Forks Stargazers Issues


Transfer Leanring

Everything about Transfer Learning. 迁移学习.

PapersTutorialsResearch areasTheorySurveyCodeDataset & benchmark

ThesisScholarsContestsJournal/conferenceApplicationsOthersContributing

Widely used by top conferences and journals:

@Misc{transferlearning.xyz,
howpublished = {\url{http://transferlearning.xyz}},   
title = {Everything about Transfer Learning and Domain Adapation},  
author = {Wang, Jindong and others}  
}  

Awesome MIT License LICENSE 996.icu

Related Codes:


NOTE: You can directly open the code in Gihub Codespaces on the web to run them without downloading! Also, try github.dev.

0.Papers (论文)

Awesome transfer learning papers (迁移学习文章汇总)

  • Paperweekly: A website to recommend and read paper notes

Latest papers:

Updated at 2024-04-16:

  • DGMamba: Domain Generalization via Generalized State Space Model [arXiv]

    • Domain generalization using mamba 用Mamba结构进行DG
  • CVPR'24 Unified Language-driven Zero-shot Domain Adaptation [arxiv]

    • Language-driven zero-shot domain adaptation 语言驱动的零样本 DA

Updated at 2024-04-01:

  • ICASSP'24 Learning Inference-Time Drift Sensor-Actuator for Domain Generalization [IEEE]

    • Inference-time drift actuator for OOD generalization
  • ICASSP'24 SBM: Smoothness-Based Minimization for Domain Generalization [IEEE]

    • Smoothness-based minimization for OOD generalization
  • ICASSP'24 G2G: Generalized Learning by Cross-Domain Knowledge Transfer for Federated Domain Generalization [IEEE]

    • Federated domain generalization
  • ICASSP'24 Single-Source Domain Generalization in Fundus Image Segmentation Via Moderating and Interpolating Input Space Augmentation [IEEE]

    • Single-source DG in fundus image segmentation
  • ICASSP'24 Style Factorization: Explore Diverse Style Variation for Domain Generalization [IEEE]

    • Style variation for domain generalization
  • ICASSP'24 SPDG-Net: Semantics Preserving Domain Augmentation through Style Interpolation for Multi-Source Domain Generalization [IEEE]

    • Domain augmentation for multi-source DG
  • ICASSP'24 Domaindiff: Boost out-of-Distribution Generalization with Synthetic Data [IEEE]

    • Using synthetic data for OOD generalization
  • ICASSP'24 Multi-Level Augmentation Consistency Learning and Sample Selection for Semi-Supervised Domain Generalization [IEEE]

    • Multi-level augmentation for semi-supervised domain generalization
  • ICASSP'24 MMS: Morphology-Mixup Stylized Data Generation for Single Domain Generalization in Medical Image Segmentation [IEEE]

    • Morphology-mixup for domain generalization

1.Introduction and Tutorials (简介与教程)

Want to quickly learn transfer learning?想尽快入门迁移学习?看下面的教程。


2.Transfer Learning Areas and Papers (研究领域与相关论文)


3.Theory and Survey (理论与综述)

Here are some articles on transfer learning theory and survey.

Survey (综述文章):

Theory (理论文章):


4.Code (代码)

Unified codebases for:

More: see HERE and HERE for an instant run using Google's Colab.


5.Transfer Learning Scholars (著名学者)

Here are some transfer learning scholars and labs.

全部列表以及代表工作性见这里

Please note that this list is far not complete. A full list can be seen in here. Transfer learning is an active field. If you are aware of some scholars, please add them here.


6.Transfer Learning Thesis (硕博士论文)

Here are some popular thesis on transfer learning.

这里, 提取码:txyz。


7.Datasets and Benchmarks (数据集与评测结果)

Please see HERE for the popular transfer learning datasets and benchmark results.

这里整理了常用的公开数据集和一些已发表的文章在这些数据集上的实验结果。


8.Transfer Learning Challenges (迁移学习比赛)


Journals and Conferences

See here for a full list of related journals and conferences.


Applications (迁移学习应用)

See HERE for transfer learning applications.

迁移学习应用请见这里


Other Resources (其他资源)


Contributing (欢迎参与贡献)

If you are interested in contributing, please refer to HERE for instructions in contribution.


Copyright notice

[Notes]This Github repo can be used by following the corresponding licenses. I want to emphasis that it may contain some PDFs or thesis, which were downloaded by me and can only be used for academic purposes. The copyrights of these materials are owned by corresponding publishers or organizations. All this are for better adademic research. If any of the authors or publishers have concerns, please contact me to delete or replace them.

About

Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.6%
  • MATLAB 3.7%
  • Jupyter Notebook 3.1%
  • Shell 3.1%
  • Makefile 1.2%
  • Cuda 0.9%
  • Other 0.4%