Skip to content

zejizhu/post-processing-c17

Repository files navigation

Post process

Cameylon17 post process.

配置说明

创建./input文件夹,文件夹中放置模型输出的csv文件
配置文件:_init_all.py
class config: 
    self.positive_gate = 0.88 #阴性阳性识别时的阈值设定
    self.transfer_gate = 0.80 #阳性识别后,进行转移尺寸识别时的阈值设定
    self.get_score_mode = 0  #获取输入评分的类型,设为0,0为从input中读取csv文件
    self.get_csv_mode = 0    #获取csv文件的类型,0:input中读取的csv为patient_xxx_node_xx.csv的形式(17测试集为该形式), 1:从input中读取test_xxx.csv的csv文件(c16测试集为该形式)
    self.eva_mode = 0   #是否进行结果评估(kappa值计算),0:不进行结果评估 1:进行结果评估,进行结果评估值针对于C16测试集,含有ground truth
    self.output_heatmap_mode = 0 #是否输出热图, 0:不输出热图,1:输出热图 
    self.gate_loop_test_mode = 0 #是否进行循环阈值遍历, 0:不进行循环,1:循环的阈值遍历,阈值遍历范围为 self.gate_start 到self.gate_end  以self.gate_step 为step
    self.gate_start = 0.92  #循环阈值的开始值(self.gate_loop_test_mode = 1时有效)
    self.gate_end = 0.94    #循环阈值的结束值(self.gate_loop_test_mode = 1时有效)
    self.gate_step = 0.001  #循环阈值的变化step(self.gate_loop_test_mode = 1时有效)
    self.output_max_positive_region = 0 #是否输出阳性区域的形状(已经进行扩充后的形状) 0:不输出 1:输出

class slide:
    self.start_id = 100  #patient的开始id, c17的测试集,start_id为100
    self.end_id = 200   #patient的结束id,如c17的测试集 end_id为200

用法

Cameylon16测试与评估

修改配置:(以Camelyon16的测试集,循环遍历阈值0.7~1.0 step为0.01,并对结果进行评估,不输出热图和阳性区域图)
class config:
    self.get_score_mode = 0
    self.get_csv_mode = 1
    self.eva_mode = 1
    self.output_heatmap_mode = 0
    self.gate_loop_test_mode = 1
    self.gate_start = 0.7
    self.gate_end = 1.0
    self.gate_step = 0.01
    self.output_max_positive_region = 0
class slide:
    self.start_id = 0
    self.end_id = 27  #c16测试集为1~130编号的slide图,换成5个slide一个patient,最大的patient_id为26,执行到27结束        
    
运行脚本: python demo.py

结果说明:
    ./heatmap: 生成的直方图
    ./outs kappa值和每个阈值下evaluate和ground truth的对比
    ./pN_stage 每个阈值下的pn-stage值
    ./slide_info 每个阈值下的slide的统计信息

Cameylon17测试集

 修改配置:(以Camelyon17的测试集,阴性阳性判别阈值为:0.88,阳性区域转移大小设定阈值0.80,生成热力图,生成阳性区域图,不进行结果评估(c17无ground truth))
 class config:
    self.positive_gate = 0.88
    self.transfer_gate = 0.80
    self.get_csv_mode = 0 
    self.eva_mode = 0 
    self.output_heatmap_mode = 1
    self.gate_loop_test_mode = 0
    self.output_max_positive_region = 1
 class slide:
    self.start_id = 100
    self.end_id = 200 #c17测试集patient_id的范围为100~199
 
 运行脚本: python demo.py

auc评估方式

评估脚本为:evaluate_c16.py
input中放置c16测试集生成的csv
该方式是取slide中最大的几个score的平均值作为slide的评分
MEAN_COUNT = 10 #设置slide的评分由最大的10个patch的均值作为slide的score值
执行脚本: python evalute_c16.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages