ADSUNet: An Accumulation-Difference-Based Siamese U-Shape Network for inter-frame Infrared Dim and Small Target Detection
Here, we provide the pytorch implementation of the paper: ADSUNet: An Accumulation-Difference-Based Siamese U-Shape Network for inter-frame Infrared Dim and Small Target Detection.
Please see requirements.txt
for the requirements.
we provide the test data in "./testdata/Sequence1/new“
Test code:
test_demo.py
Data structure
./IRSTD/inter_frame_data
"""
Data set with pixel-level binary labels;
├─A
├─B
├─label
└─list
"""
A
: images of t1 phase;
B
:images of t2 phase;
label
: label maps;
list
: contains train.txt, val.txt and test.txt
, each file records the image names (XXX.png) in the dataset.
main_ADSUnet.py
with the parameter: --gpu_ids=0 --net_G=SiamUnet_conc_diff_cbam --loss=miou --batch_size=32