Skip to content

Commit

Permalink
[Feature] support mIoU metric (open-mmlab#10426)
Browse files Browse the repository at this point in the history
  • Loading branch information
xiexinch authored Jun 5, 2023
1 parent 78c4805 commit 28c698c
Show file tree
Hide file tree
Showing 8 changed files with 726 additions and 5 deletions.
6 changes: 4 additions & 2 deletions mmdet/datasets/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .ade20k import ADE20KPanopticDataset
from .ade20k import ADE20KDataset, ADE20KPanopticDataset
from .base_det_dataset import BaseDetDataset
from .base_semseg_dataset import BaseSegDataset
from .base_video_dataset import BaseVideoDataset
from .cityscapes import CityscapesDataset
from .coco import CocoDataset
Expand Down Expand Up @@ -35,5 +36,6 @@
'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset',
'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler',
'ReIDDataset', 'YouTubeVISDataset', 'TrackAspectRatioBatchSampler',
'ADE20KPanopticDataset', 'COCOCaptionDataset', 'RefCOCODataset'
'ADE20KPanopticDataset', 'COCOCaptionDataset', 'RefCOCODataset',
'BaseSegDataset', 'ADE20KDataset'
]
117 changes: 117 additions & 0 deletions mmdet/datasets/ade20k.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,10 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp

from mmengine import fileio

from mmdet.registry import DATASETS
from .base_semseg_dataset import BaseSegDataset
from .coco_panoptic import CocoPanopticDataset


Expand Down Expand Up @@ -128,3 +133,115 @@ class ADE20KPanopticDataset(CocoPanopticDataset):
0], [25, 194, 194],
[102, 255, 0], [92, 0, 255]]
}


@DATASETS.register_module()
class ADE20KDataset(BaseSegDataset):
"""ADE20K dataset.
In segmentation map annotation for ADE20K, 0 stands for background, which
is not included in 150 categories. The ``img_suffix`` is fixed to '.jpg',
and ``seg_map_suffix`` is fixed to '.png'.
"""
METAINFO = dict(
classes=('wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road',
'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk',
'person', 'earth', 'door', 'table', 'mountain', 'plant',
'curtain', 'chair', 'car', 'water', 'painting', 'sofa',
'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair',
'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp',
'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
'skyscraper', 'fireplace', 'refrigerator', 'grandstand',
'path', 'stairs', 'runway', 'case', 'pool table', 'pillow',
'screen door', 'stairway', 'river', 'bridge', 'bookcase',
'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill',
'bench', 'countertop', 'stove', 'palm', 'kitchen island',
'computer', 'swivel chair', 'boat', 'bar', 'arcade machine',
'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
'chandelier', 'awning', 'streetlight', 'booth',
'television receiver', 'airplane', 'dirt track', 'apparel',
'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle',
'buffet', 'poster', 'stage', 'van', 'ship', 'fountain',
'conveyer belt', 'canopy', 'washer', 'plaything',
'swimming pool', 'stool', 'barrel', 'basket', 'waterfall',
'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food',
'step', 'tank', 'trade name', 'microwave', 'pot', 'animal',
'bicycle', 'lake', 'dishwasher', 'screen', 'blanket',
'sculpture', 'hood', 'sconce', 'vase', 'traffic light',
'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate',
'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
'clock', 'flag'),
palette=[[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
[102, 255, 0], [92, 0, 255]])

def __init__(self,
img_suffix='.jpg',
seg_map_suffix='.png',
return_classes=False,
**kwargs) -> None:
self.return_classes = return_classes
super().__init__(
img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, **kwargs)

def load_data_list(self) -> list[dict]:
"""Load annotation from directory or annotation file.
Returns:
list[dict]: All data info of dataset.
"""
data_list = []
img_dir = self.data_prefix.get('img_path', None)
ann_dir = self.data_prefix.get('seg_map_path', None)
for img in fileio.list_dir_or_file(
dir_path=img_dir,
list_dir=False,
suffix=self.img_suffix,
recursive=True,
backend_args=self.backend_args):
data_info = dict(img_path=osp.join(img_dir, img))
if ann_dir is not None:
seg_map = img.replace(self.img_suffix, self.seg_map_suffix)
data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
data_info['label_map'] = self.label_map
data_info['seg_fields'] = []
if self.return_classes:
data_info['text'] = list(self._metainfo['classes'])
data_list.append(data_info)
return data_list
Loading

0 comments on commit 28c698c

Please sign in to comment.