-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
apple
authored and
apple
committed
Sep 10, 2018
1 parent
44279a2
commit bad0c18
Showing
2 changed files
with
81 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import matplotlib.image as mpimg | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import scipy.misc | ||
|
||
|
||
def find_closest_pix(cur_pix,color_set): | ||
min_dis = 255*255*3 | ||
best = color_set[0] | ||
for color in color_set: | ||
distance = (cur_pix[0]-color[0])**2 + (cur_pix[1]-color[1])**2 + (cur_pix[2]-color[2])**2 | ||
if min_dis>distance: | ||
min_dis = distance | ||
best = color | ||
return best | ||
|
||
def modify_init_pic(name,save_name): | ||
img = mpimg.imread(name) | ||
|
||
base_color = [[0,0,0],[41,36,33],[192,192,192],[128,138,135],[112,128,105], | ||
[128,128,105],[225,225,225],[250,235,215],[240,255,255],[245,245,245], | ||
[255,235,205],[255,248,220],[252,230,201],[255,250,240],[220,220,220], | ||
[248,248,255],[240,255,240],[250,240,230],[255,222,173],[253,245,230]] | ||
new_img = [] | ||
for i in range(img.shape[0]): | ||
row = [] | ||
if i%100 == 0: | ||
print(i) | ||
for j in range(img.shape[1]): | ||
cur_pix = img[i][j] | ||
new_pix = find_closest_pix(cur_pix,base_color) | ||
row.append(new_pix) | ||
new_img.append(row) | ||
new_img = np.array(new_img,dtype = np.uint8) | ||
scipy.misc.imsave(save_name,new_img) | ||
print(new_img.shape) | ||
print(new_img[0][0]) | ||
plt.imshow(new_img) | ||
plt.show() | ||
|
||
|
||
class KNN: | ||
def __init__(self,k,data): | ||
self.k = k | ||
self.data = data | ||
|
||
def get_new_img(self): | ||
new_img = [] | ||
for i in range(self.data.shape[0]): | ||
row = [] | ||
if i%100 == 0: | ||
print(i) | ||
for j in range(self.data.shape[1]): | ||
neighbors = self.get_k_nearest(i,j) | ||
u, indices = np.unique(neighbors, return_inverse=True) | ||
most_common = u[np.argmax(np.apply_along_axis(np.bincount,0, indices.reshape(neighbors.shape),None, np.max(indices) + 1), axis=0)].tolist() | ||
row.append(most_common) | ||
new_img.append(row) | ||
new_img = np.array(new_img,dtype = np.uint8) | ||
print(new_img.shape) | ||
print(new_img[0][0]) | ||
return new_img | ||
|
||
def get_k_nearest(self,row,col): | ||
result = self.data[row][col] | ||
for i in range(max(0,row-self.k),min(row+self.k,self.data.shape[0])): | ||
for j in range(max(0,col-self.k),min(col+self.k,self.data.shape[1])): | ||
if i!=row and j!=col: | ||
result = np.vstack((result,self.data[i][j])) | ||
return result | ||
|
||
if __name__ == '__main__': | ||
#modify_init_pic("init.jpg","3.jpg") | ||
img = mpimg.imread('3.jpg') | ||
k = 4 | ||
knn = KNN(k,img) | ||
new_img = knn.get_new_img() | ||
plt.imshow(new_img) | ||
plt.show() | ||
|
||
|