Skip to content

PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

Notifications You must be signed in to change notification settings

zhiyongwu2015/pix2pix-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pix2pix-pytorch

PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks.

Based on pix2pix by Isola et al.

The examples from the paper:

examples

Prerequisites

  • Linux
  • Python with numpy
  • NVIDIA GPU + CUDA 8.0 + CuDNNv5.1
  • pytorch
  • torchvision

Getting Started

  • Clone this repo:

    git clone [email protected]:mrzhu-cool/pix2pix-pytorch.git cd pix2pix-pytorch

  • Get dataset

    unzip dataset/facades.zip

  • Train the model:

    python train.py --dataset facades --nEpochs 200 --cuda

  • Test the model:

    python test.py --dataset facades --model checkpoint/facades/netG_model_epoch_200.pth --cuda

Acknowledgments

This code is a concise implementation of pytorch-CycleGAN-and-pix2pix. Much easier to understand.

Highly recommend the more completed and organized code pytorch-CycleGAN-and-pix2pix by original author junyanz.

About

PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%