This repo is the official implementation of 'Video Frame Interpolation Transformer', CVPR 2022.
Paper, Video, Video without compression
The following pakages are required to run the code:
- python==3.7.6
- pytorch==1.5.1
- cudatoolkit==10.1
- torchvision==0.6.1
- cupy==7.5.0
- pillow==8.2.0
- einops==0.3.0
- Download the Vimeo-90K septuplets dataset.
- Then train VFIT-B using default training configurations:
python main.py --model VFIT_B --dataset vimeo90K_septuplet --data_root <dataset_path>
Training VFIT-S is similiar to above, just change model
to VFIT_S.
After training, you can evaluate the model with following command:
python test.py --model VFIT_B --dataset vimeo90K_septuplet --data_root <dataset_path> --load_from checkpoints/model_best.pth
You can also evaluate VFIT using our weight here.
More datasets for evaluation:
Please consider citing this paper if you find the code and data useful in your research:
@inproceedings{shi2022video,
title={Video Frame Interpolation Transformer},
author={Shi, Zhihao and Xu, Xiangyu and Liu, Xiaohong and Chen, Jun and Yang, Ming-Hsuan},
booktitle={CVPR},
year={2022}
}
Some other great video interpolation resources that we benefit from: