the reinforcement learning in RRT operation optimation of ICU-AKI patients (in MIMIC and eICU)
- Patient Trajectories Select and Construction.
- MDP Process Recognition,
- RL model (DQN) Training
- Validation and Utilities.
- Do data preparation work.
- Set the parameter in parameter.py
- Run the start.py
v6_reward_function.sql get the aki_patients and RRT treatment(action), eGFR(reward).
20240421-Factor4discontinuation.sql get the chart record for patients states related to AKI treatment. (supported by Minqi Xiong)
dataset_con.ipynb: original data generated by strategy step (specific time period) and Missing value completion dataset_con.ipynb: different trajectory data combine. dataset_desc.ipynb: data description and stat.
trainmodel.StateConstructor
utils.Dataloader
trainmodel.StateConstructor
trainmodel.RL
exp.DQNexperiment
test.TestClass
https://github.com/microsoft/med-deadend/tree/main
https://github.com/MIT-LCP/mimic-code/tree/v2.1.0/mimic-iv/concepts