Skip to content

zingale/yt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The yt Project

Users' Mailing List Devel Mailing List Build Status codecov Latest Documentation Data Hub Powered by NumFOCUS Sponsor our Project

yt is an open-source, permissively-licensed python package for analyzing and visualizing volumetric data.

yt supports structured, variable-resolution meshes, unstructured meshes, and discrete or sampled data such as particles. Focused on driving physically-meaningful inquiry, yt has been applied in domains such as astrophysics, seismology, nuclear engineering, molecular dynamics, and oceanography. Composed of a friendly community of users and developers, we want to make it easy to use and develop - we'd love it if you got involved!

We've written a method paper you may be interested in; if you use yt in the preparation of a publication, please consider citing it.

Code of Conduct

yt abides by a code of conduct partially modified from the PSF code of conduct, and is found in our contributing guide.

Installation

You can install the most recent stable version of yt either with conda from conda-forge:

conda install -c conda-forge yt

or with pip:

pip install yt

If you want the latest nightly build, you can manually install from our repository:

conda install -c yt-project/label/dev yt

To get set up with a development version, you want to clone this repository:

git clone https://github.com/yt-project/yt yt-git
cd yt-git

and work within a conda environment:

# Create a conda environment named yt-git
$ conda create -n yt-git python=3.6
# Activate it
$ source activate yt-git
# Make sure you run the latest version of conda
$ conda update conda
# Install yt's runtime dependencies
$ conda install -c conda-forge yt --only-deps
# Install yt's build dependencies
$ conda install -c conda-forge cython
# Make sure you run the latest version of pip
$ pip install --upgrade pip
$ pip install -v -e .
# Output installed packages
$ conda env export

Alternatively, you can install yt in a virtualenv:

# It is conventional to create virtualenvs at ~/.virtualenv/
$ mkdir -p ~/.virtualenv
# Assuming your version of Python 3 is 3.4 or higher,
# create a virtualenv named yt-git
$ python3 -m venv ~/.virtualenv/yt-git
# Activate it
$ source ~/.virtualenv/yt-git/bin/activate
# Make sure you run the latest version of pip
$ pip install --upgrade pip
# Assuming you have cd'd into yt-git
$ pip install -e .
# Output installed packages
$ pip freeze

Getting Started

yt is designed to provide meaningful analysis of data. We have some Quickstart example notebooks in the repository:

If you'd like to try these online, you can visit our yt Hub and run a notebook next to some of our example data.

Contributing

We love contributions! yt is open source, built on open source, and we'd love to have you hang out in our community.

We have developed some guidelines for contributing to yt.

Imposter syndrome disclaimer: We want your help. No, really.

There may be a little voice inside your head that is telling you that you're not ready to be an open source contributor; that your skills aren't nearly good enough to contribute. What could you possibly offer a project like this one?

We assure you - the little voice in your head is wrong. If you can write code at all, you can contribute code to open source. Contributing to open source projects is a fantastic way to advance one's coding skills. Writing perfect code isn't the measure of a good developer (that would disqualify all of us!); it's trying to create something, making mistakes, and learning from those mistakes. That's how we all improve, and we are happy to help others learn.

Being an open source contributor doesn't just mean writing code, either. You can help out by writing documentation, tests, or even giving feedback about the project (and yes - that includes giving feedback about the contribution process). Some of these contributions may be the most valuable to the project as a whole, because you're coming to the project with fresh eyes, so you can see the errors and assumptions that seasoned contributors have glossed over.

(This disclaimer was originally written by Adrienne Lowe for a PyCon talk, and was adapted by yt based on its use in the README file for the MetPy project)

Resources

We have some community and documentation resources available.

Powered by NumFOCUS

yt is a fiscally sponsored project of NumFOCUS. If you're interested in supporting the active maintenance and development of this project, consider donating to the project.

About

Main yt repository

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 95.2%
  • C 4.5%
  • Objective-C 0.2%
  • Cuda 0.1%
  • JavaScript 0.0%
  • Dockerfile 0.0%