forked from xmu-xiaoma666/External-Attention-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
734cd91
commit 76b9aaf
Showing
5 changed files
with
116 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,10 +1,10 @@ | ||
from model.attention.ParNetAttention import * | ||
from model.attention.UFOAttention import * | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
if __name__ == '__main__': | ||
input=torch.randn(50,512,7,7) | ||
pna = ParNetAttention(channel=512) | ||
output=pna(input) | ||
print(output.shape) #50,512,7,7 | ||
input=torch.randn(50,49,512) | ||
ufo = UFOAttention(d_model=512, d_k=512, d_v=512, h=8) | ||
output=ufo(input,input,input) | ||
print(output.shape) #[50, 49, 512] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from torch.functional import norm | ||
from torch.nn import init | ||
|
||
|
||
def XNorm(x,gamma): | ||
norm_tensor=torch.norm(x,2,-1,True) | ||
return x*gamma/norm_tensor | ||
|
||
|
||
class UFOAttention(nn.Module): | ||
''' | ||
Scaled dot-product attention | ||
''' | ||
|
||
def __init__(self, d_model, d_k, d_v, h,dropout=.1): | ||
''' | ||
:param d_model: Output dimensionality of the model | ||
:param d_k: Dimensionality of queries and keys | ||
:param d_v: Dimensionality of values | ||
:param h: Number of heads | ||
''' | ||
super(UFOAttention, self).__init__() | ||
self.fc_q = nn.Linear(d_model, h * d_k) | ||
self.fc_k = nn.Linear(d_model, h * d_k) | ||
self.fc_v = nn.Linear(d_model, h * d_v) | ||
self.fc_o = nn.Linear(h * d_v, d_model) | ||
self.dropout=nn.Dropout(dropout) | ||
self.gamma=nn.Parameter(torch.randn((1,h,1,1))) | ||
|
||
self.d_model = d_model | ||
self.d_k = d_k | ||
self.d_v = d_v | ||
self.h = h | ||
|
||
self.init_weights() | ||
|
||
|
||
def init_weights(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, queries, keys, values): | ||
b_s, nq = queries.shape[:2] | ||
nk = keys.shape[1] | ||
|
||
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k) | ||
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk) | ||
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v) | ||
|
||
kv=torch.matmul(k, v) #bs,h,c,c | ||
kv_norm=XNorm(kv,self.gamma) #bs,h,c,c | ||
q_norm=XNorm(q,self.gamma) #bs,h,n,c | ||
out=torch.matmul(q_norm,kv_norm).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) | ||
out = self.fc_o(out) # (b_s, nq, d_model) | ||
|
||
|
||
return out | ||
|
||
|
||
if __name__ == '__main__': | ||
input=torch.randn(50,49,512) | ||
ufo = UFOAttention(d_model=512, d_k=512, d_v=512, h=8) | ||
output=ufo(input,input,input) | ||
print(output.shape) | ||
|
||
|
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.