Skip to content

zmsjf/StanceDetection-Papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 

Repository files navigation

StanceDetection-Papers

Literature Review

Stance Detection: A Survey DILEK KÜÇÜK,FAZLI CANACM19[pdf]

Dataset

  1. SemEval-2016 Task 6: Detecting Stance in Tweets Saif M. Mohammad,Svetlana Kiritchenko,Parinaz Sobhani,Xiaodan Zhu,Colin Cherry [pdf]
  2. A Dataset for Multi-Target Stance Detection(pair-target) [pdf]
  3. Overview of NLPCC Shared Task 4: Stance Detection in Chinese MicroblogsRuifeng Xu,Jiachen Du,Lin Gui[pdf]
  4. FNC-1(https://github.com/FakeNewsChallenge/fnc-1)
  5. RumourEval(https://alt.qcri.org/semeval2017/task8/)
  6. VAST(2020) Zero-Shot Stance Detection: A Dataset and Model using Generalized Topic Representations[pdf]

Stance Detection work

ID Name Description Dataset Paper Conference
1 数据集 放出一个twitter上的新冠数据集 - Stance Detection in COVID-19 Tweets ACL21
2 [X] 数据增强 - Target-Aware Data Augmentation for Stance Detection NAACL21
3 数据集 数据集,减少立场-情感之间潜在的相关性。bias - tWT–WT: A Dataset to Assert the Role of Target Entities for Detecting Stance of Tweets NAACL21
4 [KEMLM] 让MLM任务mask重要的词,重要的词用weighted log-odds-ratio technique计算方式来选出对不同立场重要的词,用这种方式,注入知识 所在数据集:2020数据集(拜登,川普) Knowledge Enhanced Masked Language Model for Stance Detection NAACL21
5 [ALM] 跨领域,对抗学习 数据集:SemEval 2016 Adversarial Learning for Zero-Shot Stance Detection on Social Media NAACL21
6 [X] 增加对两个target的立场是否相同的辅任务 数据集:VAST A Multi-Task Learning Framework for Multi-Target Stance Detection ACL Findings 21
7 [CKM] 跨领域,应用conceptNet,对话题和文本分开建模 数据集:VAST Enhancing Zero-shot and Few-shot Stance Detection with Commonsense Knowledge Graph ACL Findings 21
8 [X] 跨领域,使用混合专家和领域适应方法。 - Adversarial Learning for Zero-Shot Stance Detection on Social Media EMNLP21
9 [X] 在stancy模型基础上,加入unstancy,进行训练; - Adversarial Learning for Zero-Shot Stance Detection on Social Media EMNLP21
10 [X] - - Adversarial Learning for Zero-Shot Stance Detection on Social Media EMNLP21
11 [X] - - Adversarial Learning for Zero-Shot Stance Detection on Social Media EMNLP21
12 [X] 改造MLM任务,实现立场检测 数据集:SemEval MeLT: Message-Level Transformer with Masked Document Representations as Pre-Training for Stance Detection EMNLP21
13 [s/e-GRU] 引入sentiment、emotion信息。bert拿到结果之后,不直接进行分类,又利用GRU和max-pool和avg-pool进行表示 从procon.org整理数据。 Stance Prediction for Contemporary Issues: Data and Experiments ACL20
14 [X] - - Stance Prediction and Claim Verification: An Arabic Perspective ACL20
15 [X] - - Agreement Prediction of Arguments in Cyber Argumentation for Detecting Stance Polarity and Intensity ACL20
16 [X] - - Enhancing Cross-target Stance Detection with Transferable Semantic-Emotion Knowledge ACL20
17 [X] 在本文中,我们提出了一种级联方法,该方法使用无监督学习来利用Twitter用户的转发行为来确定其对两极分化话题的态度。 然后,它使用基于用户标签的监督学习来表征在线媒体和受欢迎的Twitter用户的一般政治倾向,以及他们对目标两极分化话题的立场。 构建twitter数据集 Will-They-Won’t-They: A Very Large Dataset for Stance Detection on Twitter ACL20
18 [X] 自己构造的数据集 Predicting the Topical Stance and Political Leaning of Media using Tweets ACL20
19 [SCN] 立场并不是互相独立的,需要单独学习每个立场,考虑立场之间的相关性 SemEval taskA Stance Detection with Stance-Wise Convolution Network NLPCC20
20 [CKEMN] 引入ConceptNet知识,帮助丰富text和target的上下文 SemEval16 taskA Commonsense Knowledge Enhanced Memory Network for Stance Classification IEEE20
21 [PNEM] 使用densely connected Bi-LSTM和 nested LSTMs architectures和注意力机制 SemEval taskA,Multi-target Tweet Stance Detection Using an Attention based Neural Ensemble Model NAACL19
22 [stancy] bert,加入cos约束 Perspectrum dataset STANCY: Stance Classification Based on Consistency Cues EMNLP19
23 [MTransSAN] 多任务,Sentiment Analysis,QA,Textual Entailment,Paraphrase Detection。基本思想:在四个任务上用任务语料进行预训练,再用FNC-1语料进行fine-tuning FNC-1 Neural Multi-Task Learning for Stance Prediction EMNLP19
24 [X] - BBC,ETC(tweet),MFTC(tweet) Incorporating Label Dependencies in Multilabel Stance Detection EMNLP19
25 [X] 多任务(待看) SemEval taskA Multi-Task Stance Detection with Sentiment and Stance Lexicons EMNLP19
26 [CLMN] 跨语言 FNC-1 Contrastive Language Adaptation for Cross-Lingual Stance Detection EMNLP19
27 [X] - RumourEval,FNC-1 Gradual Argumentation Evaluation for Stance Aggregation in Automated Fake News Detection ACL19
28 [X] - 数据集 Data Set for Stance and Sentiment Analysis from User Comments on Croatian News ACL19
29 [X] - Pheme 5 events dataset Tree LSTMs with Convolution Units to Predict Stance and Rumor Veracity in Social Media Conversations ACL19
30 [X] - - Recognising Agreement and Disagreement between Stances with ReasonComparing Networks ACL19
31 [AEKFW] 在立场检测模型中加入Wikipedia信息,设定关系为pro,sup,proby,supby 从twitter,wikipedia构建数据集 Stance Detection Attending External Knowledge from Wikipedia IPSJ19
32 [RCA] QA类型的立场检测 自己从Baidu Knows,Sogou Wenwen和Mingyi构建数据集 Exploring Answer Stance Detection with Recurrent Conditional Attention AAAI19
33 [X] - - Modeling Transferable Topics for Cross-Target Stance Detection SIGIR19
34 [AE-RNN] 在GRU基础上加入tweet用户信息。引入作者的知识改善推文立场分类,由于作者信息嵌入通常不适用于带标签的,所以提出半监督式预训练方法来预测用户嵌入 SemEval taskA,Gun(论文自己构建) Using Author Embeddings to Improve Tweet Stance Classification EMNLP18
35 [X] - FNC-1 Stance Detection in Fake News: A Combined Feature Representation EMNLP18
36 [X] - FNC-1 Towards Automatic Fake News Detection: Cross-Level Stance Detection in News Articles EMNLP18
37 [CrossNet] 跨target SemEval2016 taskA Cross-Target Stance Classification with Self-Attention Networks ACL18
38 [X] - - A Retrospective Analysis of the Fake News Challenge Stance-Detection Task COLING18
39 [X] - - Structured Representation Learning for Online Debate Stance Prediction COLING18
40 [X] - 《Other topics you may also agree or disagree: Modeling inter-topic preferences using tweets and matrix factorization》 Predicting Stances from Social Media Posts using Factorization Machines COLING18
41 [HAN] 引入Sentiment,Dependency,Argument,用注意力机制共同做立场检测 SemEval16 taskA,H&N14 Stance Detection with Hierarchical Attention Network COLING18
42 [X] - - ConStance: Modeling Annotation Contexts to Improve Stance Classification EMNLP17
43 [TAN] 在模型层面注意到target SemEval16 taskA,NLPCC16 taskA Stance Classification with Target-Specific Neural Attention Networks IJCAI17
44 [BiCond] 经典 SemEval taskB Stance Detection with Bidirectional Conditional Encoding EMNLP16
45 [X] - SemEval taskB Weakly Supervised Tweet Stance Classification by Relational Bootstrapping EMNLP16
46 [X] - - Modeling Stance in Student Essays ACL16
47 [X] - - Hawkes Processes for Continuous Time Sequence Classification: an Application to Rumour Stance Classification in Twitter ACL16
48 [STS] 不是深度学习方法,概率 SemEval taskA&B A Joint Sentiment-Target-Stance Model for Stance Classification in Tweets COLING16
49 [X] - PHEME rumour Stance Classification in Rumours as a Sequential Task Exploiting the Tree Structure of Social Media Conversations COLING16
50 [UTCNN] - FBFans(中文),CreateDebate UTCNN: a Deep Learning Model of Stance Classification on Social Media Text COLING16
51 [] - - Stance Classification by Recognizing Related Events about Targets IEEE16
52 [pkudblab] SemEval 2016 taskA第二名,taskB第一名。利用CNN和投票策略。对五个target单独训练五个模型 SemEval taskA&B pkudblab at SemEval-2016 Task 6 : A Specific Convolutional Neural Network System for Effective Stance Detection SemEval16

Cross-Target Stance Detection

  1. Enhancing Cross-target Stance Detection with Transferable Semantic-Emotion Knowledge Bowen Zhang, Min Yang, Xutao Li, Yunming Ye, Xiaofei Xu, Kuai DaiACL20[pdf]
  2. Cross-Target Stance Classification with Self-Attention Networks Chang Xu,Cecile Paris,Surya Nepal,Ross Sparks ACL18 [pdf]
  3. Modeling Transferable Topics for Cross-Target Stance Detection Penghui Wei,Wenji Mao SIGIR19 [pdf]
  4. Enhancing Cross-target Stance Detection with Transferable Semantic-Emotion Knowledge Bowen Zhang , Min Yang ACL2020 [pdf]

Cross-Lingual

  1. Contrastive Language Adaptation for Cross-Lingual Stance Detection Mitra Mohtarami,James Glass,Preslav Nakov EMNLP19 [pdf]

Commonsense Konwledge

  1. Commonsense Knowledge Enhanced Memory Network for Stance Classification Jiachen Du,Lin Gui,Ruifeng Xu,Yunqing Xia,Xuan Wang IEEE20[pdf]
  2. Stance Detection Attending External Knowledge from Wikipedia Kazuaki Hanawa,Akira Sasaki,Naoaki Okazaki,Kentaro Inui IPSJ19[pdf]

Reference

[summarization.bib](https://github.com/zmsjf/StanceDetection-Papers/blob/main/summrization.bib)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages