This repository addresses the problem of generating high-resolution images based on low-resolution ones. The dataset contains images of text. Full solution with step-by-step approach can be found in Project3.ipynb
file.
- TextZoom Dataset: https://paperswithcode.com/dataset/textzoom, https://github.com/JasonBoy1/TextZoom, https://arxiv.org/pdf/2005.03341v3.pdf
- NEOCR Dataset: http://www.iapr-tc11.org/dataset/NEOCR/neocr_metadata_doc.pdf
- Super-resolution: https://arxiv.org/pdf/2103.02368v1.pdf
- Models:
- Download the data first and paste it into
/data
directory - In order to use neptune.ai you need to provide your api token (paste your token in ./cfg/tokens/api_token.yaml file in the format
token: <your-api-token>
). - Prepare environment using one of two options:
- Install dependencies using
pip install requirements.txt
and setPYTHONPATH=src
- Use Docker:
docker build -t <image-name> .
docker run -p 8888:8888 <image-name>
- Install dependencies using
We trained our models with cuda, having two independent gpus available:
- NVIDIA GeForce GTX 1060 6GB
- NVIDIA GeForce RTX 2080 Ti 11GB