Skip to content

Commit

Permalink
update structure; add save coco_info
Browse files Browse the repository at this point in the history
  • Loading branch information
wz committed Mar 25, 2021
1 parent bf5b4ce commit 7f77f1c
Show file tree
Hide file tree
Showing 16 changed files with 375 additions and 286 deletions.
3 changes: 3 additions & 0 deletions pytorch_object_detection/faster_rcnn/backbone/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .resnet50_fpn_model import resnet50_fpn_backbone
from .mobilenetv2_model import MobileNetV2

Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
from collections import OrderedDict

import torch.nn as nn
import torch
from torch import Tensor
import torch.nn.functional as F

from torch.jit.annotations import Tuple, List, Dict


class FeaturePyramidNetwork(nn.Module):
"""
Module that adds a FPN from on top of a set of feature maps. This is based on
`"Feature Pyramid Network for Object Detection" <https://arxiv.org/abs/1612.03144>`_.
The feature maps are currently supposed to be in increasing depth
order.
The input to the model is expected to be an OrderedDict[Tensor], containing
the feature maps on top of which the FPN will be added.
Arguments:
in_channels_list (list[int]): number of channels for each feature map that
is passed to the module
out_channels (int): number of channels of the FPN representation
extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
be performed. It is expected to take the fpn features, the original
features and the names of the original features as input, and returns
a new list of feature maps and their corresponding names
"""

def __init__(self, in_channels_list, out_channels, extra_blocks=None):
super(FeaturePyramidNetwork, self).__init__()
# 用来调整resnet特征矩阵(layer1,2,3,4)的channel(kernel_size=1)
self.inner_blocks = nn.ModuleList()
# 对调整后的特征矩阵使用3x3的卷积核来得到对应的预测特征矩阵
self.layer_blocks = nn.ModuleList()
for in_channels in in_channels_list:
if in_channels == 0:
continue
inner_block_module = nn.Conv2d(in_channels, out_channels, 1)
layer_block_module = nn.Conv2d(out_channels, out_channels, 3, padding=1)
self.inner_blocks.append(inner_block_module)
self.layer_blocks.append(layer_block_module)

# initialize parameters now to avoid modifying the initialization of top_blocks
for m in self.children():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a=1)
nn.init.constant_(m.bias, 0)

self.extra_blocks = extra_blocks

def get_result_from_inner_blocks(self, x, idx):
# type: (Tensor, int) -> Tensor
"""
This is equivalent to self.inner_blocks[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = len(self.inner_blocks)
if idx < 0:
idx += num_blocks
i = 0
out = x
for module in self.inner_blocks:
if i == idx:
out = module(x)
i += 1
return out

def get_result_from_layer_blocks(self, x, idx):
# type: (Tensor, int) -> Tensor
"""
This is equivalent to self.layer_blocks[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = len(self.layer_blocks)
if idx < 0:
idx += num_blocks
i = 0
out = x
for module in self.layer_blocks:
if i == idx:
out = module(x)
i += 1
return out

def forward(self, x):
# type: (Dict[str, Tensor]) -> Dict[str, Tensor]
"""
Computes the FPN for a set of feature maps.
Arguments:
x (OrderedDict[Tensor]): feature maps for each feature level.
Returns:
results (OrderedDict[Tensor]): feature maps after FPN layers.
They are ordered from highest resolution first.
"""
# unpack OrderedDict into two lists for easier handling
names = list(x.keys())
x = list(x.values())

# 将resnet layer4的channel调整到指定的out_channels
# last_inner = self.inner_blocks[-1](x[-1])
last_inner = self.get_result_from_inner_blocks(x[-1], -1)
# result中保存着每个预测特征层
results = []
# 将layer4调整channel后的特征矩阵,通过3x3卷积后得到对应的预测特征矩阵
# results.append(self.layer_blocks[-1](last_inner))
results.append(self.get_result_from_layer_blocks(last_inner, -1))

for idx in range(len(x) - 2, -1, -1):
inner_lateral = self.get_result_from_inner_blocks(x[idx], idx)
feat_shape = inner_lateral.shape[-2:]
inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")
last_inner = inner_lateral + inner_top_down
results.insert(0, self.get_result_from_layer_blocks(last_inner, idx))

# 在layer4对应的预测特征层基础上生成预测特征矩阵5
if self.extra_blocks is not None:
results, names = self.extra_blocks(results, x, names)

# make it back an OrderedDict
out = OrderedDict([(k, v) for k, v in zip(names, results)])

return out


class LastLevelMaxPool(torch.nn.Module):
"""
Applies a max_pool2d on top of the last feature map
"""

def forward(self, x, y, names):
# type: (List[Tensor], List[Tensor], List[str]) -> Tuple[List[Tensor], List[str]]
names.append("pool")
x.append(F.max_pool2d(x[-1], 1, 2, 0))
return x, names
Loading

0 comments on commit 7f77f1c

Please sign in to comment.