Lists (1)
Sort Name ascending (A-Z)
Starred repositories
TinyChatEngine: On-Device LLM Inference Library
这是一个简单的技术科普教程项目,主要聚焦于解释一些有趣的,前沿的技术概念和原理。每篇文章都力求在 5 分钟内阅读完成。
解决Cursor在免费订阅期间出现以下提示的问题: You've reached your trial request limit. / Too many free trial accounts used on this machine. Please upgrade to pro. We have this limit in place to prevent abuse. Please l…
Simple and readable code for training and sampling from diffusion models
The official implementation of DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis
A list of papers, docs, codes about efficient AIGC. This repo is aimed to provide the info for efficient AIGC research, including language and vision, we are continuously improving the project. Wel…
Awesome LLMs on Device: A Comprehensive Survey
A collection of resources on controllable generation with text-to-image diffusion models.
(ෆ`꒳´ෆ) A Survey on Text-to-Image Generation/Synthesis.
🧑🚀 全世界最好的LLM资料总结(数据处理、模型训练、模型部署、o1 模型、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.
整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主,包括底座模型,垂直领域微调及应用,数据集与教程等。
Awesome-LLM-Tabular: a curated list of Large Language Model applied to Tabular Data
We collect papers about "large language models (LLM) for table-related tasks", e.g., using LLM for Table QA task. “表格+LLM”相关论文整理
AutoRAG: An Open-Source Framework for Retrieval-Augmented Generation (RAG) Evaluation & Optimization with AutoML-Style Automation
RAG-VectorDB-Embedings-LlamaIndex-Langchain
Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024)
✨✨VITA-1.5: Towards GPT-4o Level Real-Time Vision and Speech Interaction
High-resolution models for human tasks.
real time face swap and one-click video deepfake with only a single image
You can do anything by sota AI with prompt ,auto AI tools , VL larger model fine and project
OpenAI Baselines: high-quality implementations of reinforcement learning algorithms
Awesome-LLM: a curated list of Large Language Model
本项目旨在分享大模型相关技术原理以及实战经验(大模型工程化、大模型应用落地)
Course to get into Large Language Models (LLMs) with roadmaps and Colab notebooks.
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系[email protected] 版权所有,违权必究 Tan 2018.06
《开源大模型食用指南》针对中国宝宝量身打造的基于Linux环境快速微调(全参数/Lora)、部署国内外开源大模型(LLM)/多模态大模型(MLLM)教程