forked from aassxun/Equiangular-Basis-Vectors
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
1,028 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,304 @@ | ||
import cv2 | ||
import os | ||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7" | ||
import presets | ||
import transforms | ||
from torch.utils.data.dataloader import default_collate | ||
import torch | ||
|
||
import sys | ||
import timm | ||
import logging | ||
import argparse | ||
import numpy as np | ||
from PIL import Image | ||
from tqdm import tqdm | ||
import random | ||
from torch import nn | ||
from torch.optim import Adam, SGD, AdamW | ||
from torch.utils.data import Dataset, DataLoader | ||
from torch.cuda.amp import autocast, GradScaler | ||
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts | ||
import torch.distributed as dist | ||
import torch.multiprocessing as mp | ||
# from torchvision import transforms | ||
import time | ||
import pandas as pd | ||
from torch.nn.parallel import DataParallel | ||
from torch.nn.parallel._functions import Scatter | ||
from torch.nn.parallel.parallel_apply import parallel_apply | ||
import torchvision | ||
import torch.nn.functional as F | ||
|
||
CFG = { | ||
'root_dir': '/', | ||
'seed': 42, | ||
'resize_size': 256, #val | ||
'crop_size': 224, #train | ||
'epochs': 105, | ||
'warmup_epochs': 5, | ||
'train_bs': 1024, | ||
'valid_bs': 1024, | ||
'lr': 0.5, | ||
'weight_decay': 2e-5, | ||
'lr_warmup_decay': 0.01, | ||
'num_workers': 32, | ||
'accum_iter': 1, | ||
'verbose_step': 1, | ||
'device': 'cuda:0', | ||
'num_classes': 1000, | ||
'model_name': 'resnet50', #swin_tiny_patch4_window7_224,resnet50 | ||
'pkl_pth': 'eq_1000_1000.pkl', | ||
'info': 'EBV_ResNet_dim1000_SGD_epoch105', | ||
'ifval': False, | ||
'model_path': 'EBV_ResNet_dim1000_SGD_epoch105.pth' | ||
} | ||
logger = logging.getLogger(__name__) | ||
logger.setLevel(level=logging.INFO) | ||
handler = logging.FileHandler("./" + CFG['info'] + ".txt") | ||
handler.setLevel(logging.INFO) | ||
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') | ||
handler.setFormatter(formatter) | ||
logger.addHandler(handler) | ||
|
||
|
||
def seed_everything(seed): | ||
random.seed(seed) | ||
os.environ['PYTHONHASHSEED'] = str(seed) | ||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
torch.cuda.manual_seed(seed) | ||
torch.backends.cudnn.deterministic = True | ||
torch.backends.cudnn.benchmark = True | ||
|
||
def get_img(path): | ||
# im_bgr = cv2.imread(path) | ||
# im_rgb = im_bgr[:, :, ::-1] | ||
# return im_rgb | ||
img = Image.open(path).convert('RGB') | ||
return img | ||
|
||
import pickle as pkl | ||
class ImageNetDataset(Dataset): | ||
def __init__(self, root, part='train', transforms=None): | ||
self.part = part | ||
self.transforms = transforms | ||
self.images = [] | ||
self.labels = [] | ||
self.labels = [] | ||
if part == 'train': | ||
mycsv = pd.read_csv('./imagenet_train.csv') | ||
else: | ||
mycsv = pd.read_csv('./imagenet_val.csv') | ||
for i in range(len(mycsv['image_id'])): | ||
self.images.append('/data1/dataset'+mycsv['image_id'][i][3:]) | ||
self.labels.append(int(mycsv['label'][i])) | ||
|
||
def __len__(self): | ||
return len(self.labels) | ||
|
||
def __getitem__(self, index): | ||
image = get_img(self.images[index]) | ||
if self.transforms is not None: | ||
image = self.transforms(image) | ||
# image = self.transforms(image=image)['image'] | ||
return image, self.labels[index] | ||
|
||
|
||
def train_one_epoch(epoch, model, loss_fn, optimizer, train_loader, d, device, scheduler=None, schd_batch_update=False): | ||
model.train() | ||
|
||
t = time.time() | ||
running_loss = None | ||
|
||
pbar = tqdm(enumerate(train_loader), total=len(train_loader), ncols=100) | ||
for step, (imgs, image_labels) in pbar: | ||
imgs = imgs.to(device).float() | ||
image_labels = image_labels.to(device)#.long() | ||
|
||
with autocast(): | ||
image_preds = model(imgs) | ||
|
||
# loss = loss_fn(image_preds, pt_image_labels, ng_image_labels) | ||
loss = loss_fn((image_preds@d.t()/0.07), image_labels) | ||
scaler.scale(loss).backward() | ||
|
||
if running_loss is None: | ||
running_loss = loss.item() | ||
else: | ||
running_loss = running_loss * .99 + loss.item() * .01 | ||
|
||
if ((step + 1) % CFG['accum_iter'] == 0) or ((step + 1) == len(train_loader)): | ||
# may unscale_ here if desired (e.g., to allow clipping unscaled gradients) | ||
|
||
scaler.step(optimizer) | ||
scaler.update() | ||
optimizer.zero_grad() | ||
|
||
if scheduler is not None and schd_batch_update: | ||
scheduler.step() | ||
|
||
if ((step + 1) % CFG['verbose_step'] == 0) or ((step + 1) == len(train_loader)): | ||
description = f'epoch {epoch} loss: {running_loss:.4f}' | ||
|
||
pbar.set_description(description) | ||
|
||
logger.info(' Epoch: ' + str(epoch) + ' Final Train Loss: {:.4f}'.format(running_loss)) | ||
if scheduler is not None and not schd_batch_update: | ||
scheduler.step() | ||
|
||
def valid_one_epoch(epoch, model, loss_fn, val_loader, d, device, scheduler=None, schd_loss_update=False): | ||
model.eval() | ||
|
||
t = time.time() | ||
#image_preds_all = [] | ||
#image_targets_all = [] | ||
total_num = 0 | ||
correct_num = 0 | ||
|
||
pbar = tqdm(enumerate(val_loader), total=len(val_loader), ncols=100) | ||
for step, (imgs, image_labels) in pbar: | ||
imgs = imgs.to(device).float() | ||
|
||
image_preds = model(imgs) # batch_size * 50 | ||
|
||
image_preds = image_preds@d.t()#.abs() #bs *200 | ||
|
||
image_preds = torch.argmax(image_preds, 1).detach().cpu().numpy() | ||
image_targets = image_labels.detach().cpu().numpy() | ||
|
||
total_num += image_targets.shape[0] | ||
correct_num += (image_preds == image_targets).sum() | ||
|
||
ans = correct_num / total_num | ||
print('Validation accuracy = {:.6f}, {}/{}'.format(ans, correct_num, total_num)) | ||
logger.info(' Epoch: ' + str(epoch) + ' validation accuracy = {:.6f}'.format(ans)) | ||
return ans | ||
|
||
|
||
def test_one_epoch(model, val_loader, d, device): | ||
model.eval() | ||
|
||
t = time.time() | ||
loss_sum = 0 | ||
sample_num = 0 | ||
image_preds_all = [] | ||
image_targets_all = [] | ||
|
||
pbar = tqdm(enumerate(val_loader), total=len(val_loader), ncols=100) | ||
for step, (imgs, image_labels) in pbar: | ||
imgs = imgs.to(device).float() | ||
|
||
image_preds = model(imgs) # batch_size * 50 | ||
|
||
image_preds = image_preds@d.t()#.abs() #bs *200 | ||
|
||
image_preds_all += [torch.argmax(image_preds, 1).detach().cpu().numpy()] | ||
image_targets_all += [image_labels.detach().cpu().numpy()] | ||
|
||
image_preds_all = np.concatenate(image_preds_all) | ||
image_targets_all = np.concatenate(image_targets_all) | ||
ans = (image_preds_all == image_targets_all).mean() | ||
print('validation multi-class accuracy = {:.4f}'.format((image_preds_all == image_targets_all).mean())) | ||
|
||
return ans | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self, model_name="resnet50"): | ||
super(Net, self).__init__() | ||
self.backbone = timm.create_model(model_name=CFG['model_name'], num_classes=CFG['num_classes'], pretrained=False) | ||
|
||
def forward(self, x): | ||
x = self.backbone(x) | ||
x = F.normalize(x) | ||
return x | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
seed_everything(CFG['seed']) | ||
|
||
device = torch.device(CFG['device']) | ||
|
||
model = Net() | ||
model = nn.DataParallel(model) | ||
model.to(device) | ||
|
||
train_dataset = ImageNetDataset(CFG['root_dir'], 'train', presets.ClassificationPresetTrain( | ||
crop_size=CFG['crop_size'], | ||
auto_augment_policy=None, | ||
auto_augment_policy="ta_wide", | ||
random_erase_prob=0.1, | ||
),) | ||
|
||
mixupcutmix = torchvision.transforms.RandomChoice([ | ||
transforms.RandomMixup(num_classes=CFG['num_classes'], p=1.0, alpha=0.2), | ||
transforms.RandomCutmix(num_classes=CFG['num_classes'], p=1.0, alpha=1.0) | ||
]) | ||
collate_fn = lambda batch: mixupcutmix(*default_collate(batch)) | ||
|
||
train_loader = DataLoader(train_dataset, | ||
batch_size=CFG['train_bs'], | ||
num_workers=CFG['num_workers'], | ||
shuffle=True, | ||
pin_memory=True, | ||
collate_fn=collate_fn, | ||
) | ||
|
||
val_dataset = ImageNetDataset(CFG['root_dir'], 'val', presets.ClassificationPresetEval( | ||
crop_size=CFG['resize_size'], resize_size=CFG['resize_size'] | ||
)) | ||
val_loader = DataLoader(val_dataset, CFG['valid_bs'], num_workers=CFG['num_workers'], pin_memory=True) | ||
|
||
scaler = GradScaler() | ||
|
||
optimizer = torch.optim.SGD(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay'], momentum=0.9) | ||
# optimizer = torch.optim.Adam(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay']) | ||
# optimizer = torch.optim.AdamW(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay']) | ||
|
||
main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( | ||
optimizer, T_max=CFG['epochs'] - CFG['warmup_epochs']#, eta_min = 1e-5 | ||
) | ||
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR( | ||
optimizer, start_factor=CFG['lr_warmup_decay'], total_iters=CFG['warmup_epochs'] | ||
) | ||
scheduler = torch.optim.lr_scheduler.SequentialLR( | ||
optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[CFG['warmup_epochs']] | ||
) | ||
|
||
|
||
loss_tr = nn.CrossEntropyLoss(label_smoothing=0.1).to(device) # MyCrossEntropyLoss().to(device) | ||
loss_fn = nn.CrossEntropyLoss().to(device) | ||
|
||
|
||
|
||
d = pkl.load(open(CFG['pkl_pth'], 'rb')).data#.detach().cpu() | ||
d = F.normalize(d).to(device) | ||
|
||
|
||
if CFG['ifval'] == True: | ||
model.load_state_dict(torch.load(CFG['model_path'])) | ||
with torch.no_grad(): | ||
answer = test_one_epoch(model, val_loader, d, device) | ||
print(answer) | ||
exit() | ||
|
||
best_answer = 0.0 | ||
for epoch in range(CFG['epochs']): | ||
print(optimizer.param_groups[0]['lr']) | ||
train_one_epoch(epoch, model, loss_tr, optimizer, train_loader, d, device, scheduler=scheduler, | ||
schd_batch_update=False) | ||
|
||
answer = 0.0 | ||
with torch.no_grad(): | ||
if epoch%1==0: | ||
answer = valid_one_epoch(epoch, model, loss_fn, val_loader, d, device, scheduler=None, schd_loss_update=False) | ||
if answer > best_answer: | ||
torch.save(model.state_dict(), CFG['info'] + '.pth'.format(epoch)) | ||
if answer > best_answer: | ||
best_answer = answer | ||
del model, optimizer, train_loader, val_loader, scaler, scheduler | ||
print(best_answer) | ||
logger.info('BEST-TEST-ACC: ' + str(best_answer)) | ||
torch.cuda.empty_cache() |
Oops, something went wrong.