forked from aassxun/Equiangular-Basis-Vectors
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
388 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
import torch | ||
from torchvision.transforms import autoaugment, transforms | ||
from torchvision.transforms.functional import InterpolationMode | ||
|
||
|
||
class ClassificationPresetTrain: | ||
def __init__( | ||
self, | ||
crop_size, | ||
mean=(0.485, 0.456, 0.406), | ||
std=(0.229, 0.224, 0.225), | ||
interpolation=InterpolationMode.BILINEAR, | ||
hflip_prob=0.5, | ||
auto_augment_policy=None, | ||
random_erase_prob=0.0, | ||
): | ||
trans = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)] | ||
if hflip_prob > 0: | ||
trans.append(transforms.RandomHorizontalFlip(hflip_prob)) | ||
if auto_augment_policy is not None: | ||
if auto_augment_policy == "ra": | ||
trans.append(autoaugment.RandAugment(interpolation=interpolation)) | ||
elif auto_augment_policy == "ta_wide": | ||
trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation)) | ||
else: | ||
aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) | ||
trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation)) | ||
trans.extend( | ||
[ | ||
transforms.PILToTensor(), | ||
transforms.ConvertImageDtype(torch.float), | ||
transforms.Normalize(mean=mean, std=std), | ||
] | ||
) | ||
if random_erase_prob > 0: | ||
trans.append(transforms.RandomErasing(p=random_erase_prob)) | ||
|
||
self.transforms = transforms.Compose(trans) | ||
|
||
def __call__(self, img): | ||
return self.transforms(img) | ||
|
||
|
||
class ClassificationPresetEval: | ||
def __init__( | ||
self, | ||
crop_size, | ||
resize_size=256, | ||
mean=(0.485, 0.456, 0.406), | ||
std=(0.229, 0.224, 0.225), | ||
interpolation=InterpolationMode.BILINEAR, | ||
): | ||
|
||
self.transforms = transforms.Compose( | ||
[ | ||
transforms.Resize(resize_size, interpolation=interpolation), | ||
transforms.CenterCrop(crop_size), | ||
transforms.PILToTensor(), | ||
transforms.ConvertImageDtype(torch.float), | ||
transforms.Normalize(mean=mean, std=std), | ||
] | ||
) | ||
|
||
def __call__(self, img): | ||
return self.transforms(img) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
import math | ||
from typing import Tuple | ||
|
||
import torch | ||
from torch import Tensor | ||
from torchvision.transforms import functional as F | ||
|
||
|
||
class RandomMixup(torch.nn.Module): | ||
"""Randomly apply Mixup to the provided batch and targets. | ||
The class implements the data augmentations as described in the paper | ||
`"mixup: Beyond Empirical Risk Minimization" <https://arxiv.org/abs/1710.09412>`_. | ||
Args: | ||
num_classes (int): number of classes used for one-hot encoding. | ||
p (float): probability of the batch being transformed. Default value is 0.5. | ||
alpha (float): hyperparameter of the Beta distribution used for mixup. | ||
Default value is 1.0. | ||
inplace (bool): boolean to make this transform inplace. Default set to False. | ||
""" | ||
|
||
def __init__(self, num_classes: int, p: float = 0.5, alpha: float = 1.0, inplace: bool = False) -> None: | ||
super().__init__() | ||
assert num_classes > 0, "Please provide a valid positive value for the num_classes." | ||
assert alpha > 0, "Alpha param can't be zero." | ||
|
||
self.num_classes = num_classes | ||
self.p = p | ||
self.alpha = alpha | ||
self.inplace = inplace | ||
|
||
def forward(self, batch: Tensor, target: Tensor) -> Tuple[Tensor, Tensor]: | ||
""" | ||
Args: | ||
batch (Tensor): Float tensor of size (B, C, H, W) | ||
target (Tensor): Integer tensor of size (B, ) | ||
Returns: | ||
Tensor: Randomly transformed batch. | ||
""" | ||
if batch.ndim != 4: | ||
raise ValueError(f"Batch ndim should be 4. Got {batch.ndim}") | ||
if target.ndim != 1: | ||
raise ValueError(f"Target ndim should be 1. Got {target.ndim}") | ||
if not batch.is_floating_point(): | ||
raise TypeError(f"Batch dtype should be a float tensor. Got {batch.dtype}.") | ||
if target.dtype != torch.int64: | ||
raise TypeError(f"Target dtype should be torch.int64. Got {target.dtype}") | ||
|
||
if not self.inplace: | ||
batch = batch.clone() | ||
target = target.clone() | ||
|
||
if target.ndim == 1: | ||
target = torch.nn.functional.one_hot(target, num_classes=self.num_classes).to(dtype=batch.dtype) | ||
|
||
if torch.rand(1).item() >= self.p: | ||
return batch, target | ||
|
||
# It's faster to roll the batch by one instead of shuffling it to create image pairs | ||
batch_rolled = batch.roll(1, 0) | ||
target_rolled = target.roll(1, 0) | ||
|
||
# Implemented as on mixup paper, page 3. | ||
lambda_param = float(torch._sample_dirichlet(torch.tensor([self.alpha, self.alpha]))[0]) | ||
batch_rolled.mul_(1.0 - lambda_param) | ||
batch.mul_(lambda_param).add_(batch_rolled) | ||
|
||
target_rolled.mul_(1.0 - lambda_param) | ||
target.mul_(lambda_param).add_(target_rolled) | ||
|
||
return batch, target | ||
|
||
def __repr__(self) -> str: | ||
s = self.__class__.__name__ + "(" | ||
s += "num_classes={num_classes}" | ||
s += ", p={p}" | ||
s += ", alpha={alpha}" | ||
s += ", inplace={inplace}" | ||
s += ")" | ||
return s.format(**self.__dict__) | ||
|
||
|
||
class RandomCutmix(torch.nn.Module): | ||
"""Randomly apply Cutmix to the provided batch and targets. | ||
The class implements the data augmentations as described in the paper | ||
`"CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features" | ||
<https://arxiv.org/abs/1905.04899>`_. | ||
Args: | ||
num_classes (int): number of classes used for one-hot encoding. | ||
p (float): probability of the batch being transformed. Default value is 0.5. | ||
alpha (float): hyperparameter of the Beta distribution used for cutmix. | ||
Default value is 1.0. | ||
inplace (bool): boolean to make this transform inplace. Default set to False. | ||
""" | ||
|
||
def __init__(self, num_classes: int, p: float = 0.5, alpha: float = 1.0, inplace: bool = False) -> None: | ||
super().__init__() | ||
assert num_classes > 0, "Please provide a valid positive value for the num_classes." | ||
assert alpha > 0, "Alpha param can't be zero." | ||
|
||
self.num_classes = num_classes | ||
self.p = p | ||
self.alpha = alpha | ||
self.inplace = inplace | ||
|
||
def forward(self, batch: Tensor, target: Tensor) -> Tuple[Tensor, Tensor]: | ||
""" | ||
Args: | ||
batch (Tensor): Float tensor of size (B, C, H, W) | ||
target (Tensor): Integer tensor of size (B, ) | ||
Returns: | ||
Tensor: Randomly transformed batch. | ||
""" | ||
if batch.ndim != 4: | ||
raise ValueError(f"Batch ndim should be 4. Got {batch.ndim}") | ||
if target.ndim != 1: | ||
raise ValueError(f"Target ndim should be 1. Got {target.ndim}") | ||
if not batch.is_floating_point(): | ||
raise TypeError(f"Batch dtype should be a float tensor. Got {batch.dtype}.") | ||
if target.dtype != torch.int64: | ||
raise TypeError(f"Target dtype should be torch.int64. Got {target.dtype}") | ||
|
||
if not self.inplace: | ||
batch = batch.clone() | ||
target = target.clone() | ||
|
||
if target.ndim == 1: | ||
target = torch.nn.functional.one_hot(target, num_classes=self.num_classes).to(dtype=batch.dtype) | ||
|
||
if torch.rand(1).item() >= self.p: | ||
return batch, target | ||
|
||
# It's faster to roll the batch by one instead of shuffling it to create image pairs | ||
batch_rolled = batch.roll(1, 0) | ||
target_rolled = target.roll(1, 0) | ||
|
||
# Implemented as on cutmix paper, page 12 (with minor corrections on typos). | ||
lambda_param = float(torch._sample_dirichlet(torch.tensor([self.alpha, self.alpha]))[0]) | ||
W, H = F.get_image_size(batch) | ||
|
||
r_x = torch.randint(W, (1,)) | ||
r_y = torch.randint(H, (1,)) | ||
|
||
r = 0.5 * math.sqrt(1.0 - lambda_param) | ||
r_w_half = int(r * W) | ||
r_h_half = int(r * H) | ||
|
||
x1 = int(torch.clamp(r_x - r_w_half, min=0)) | ||
y1 = int(torch.clamp(r_y - r_h_half, min=0)) | ||
x2 = int(torch.clamp(r_x + r_w_half, max=W)) | ||
y2 = int(torch.clamp(r_y + r_h_half, max=H)) | ||
|
||
batch[:, :, y1:y2, x1:x2] = batch_rolled[:, :, y1:y2, x1:x2] | ||
lambda_param = float(1.0 - (x2 - x1) * (y2 - y1) / (W * H)) | ||
|
||
target_rolled.mul_(1.0 - lambda_param) | ||
target.mul_(lambda_param).add_(target_rolled) | ||
|
||
return batch, target | ||
|
||
def __repr__(self) -> str: | ||
s = self.__class__.__name__ + "(" | ||
s += "num_classes={num_classes}" | ||
s += ", p={p}" | ||
s += ", alpha={alpha}" | ||
s += ", inplace={inplace}" | ||
s += ")" | ||
return s.format(**self.__dict__) | ||
|
||
|
||
|
||
class RandomMixup2(torch.nn.Module): | ||
"""Randomly apply Mixup to the provided batch and targets. | ||
The class implements the data augmentations as described in the paper | ||
`"mixup: Beyond Empirical Risk Minimization" <https://arxiv.org/abs/1710.09412>`_. | ||
Args: | ||
num_classes (int): number of classes used for one-hot encoding. | ||
p (float): probability of the batch being transformed. Default value is 0.5. | ||
alpha (float): hyperparameter of the Beta distribution used for mixup. | ||
Default value is 1.0. | ||
inplace (bool): boolean to make this transform inplace. Default set to False. | ||
""" | ||
|
||
def __init__(self, num_classes: int, p: float = 0.5, alpha: float = 1.0, inplace: bool = False) -> None: | ||
super().__init__() | ||
assert num_classes > 0, "Please provide a valid positive value for the num_classes." | ||
assert alpha > 0, "Alpha param can't be zero." | ||
|
||
self.num_classes = num_classes | ||
self.p = p | ||
self.alpha = alpha | ||
self.inplace = inplace | ||
|
||
def forward(self, batch: Tensor, target: Tensor) -> Tuple[Tensor, Tensor]: | ||
""" | ||
Args: | ||
batch (Tensor): Float tensor of size (B, C, H, W) | ||
target (Tensor): Integer tensor of size (B, ) | ||
Returns: | ||
Tensor: Randomly transformed batch. | ||
""" | ||
if batch.ndim != 4: | ||
raise ValueError(f"Batch ndim should be 4. Got {batch.ndim}") | ||
if target.ndim != 1: | ||
raise ValueError(f"Target ndim should be 1. Got {target.ndim}") | ||
if not batch.is_floating_point(): | ||
raise TypeError(f"Batch dtype should be a float tensor. Got {batch.dtype}.") | ||
if target.dtype != torch.int64: | ||
raise TypeError(f"Target dtype should be torch.int64. Got {target.dtype}") | ||
|
||
if not self.inplace: | ||
batch = batch.clone() | ||
target = target.clone() | ||
|
||
if torch.rand(1).item() >= self.p: | ||
return batch, target | ||
|
||
# It's faster to roll the batch by one instead of shuffling it to create image pairs | ||
batch_rolled = batch.roll(1, 0) | ||
target_rolled = target.roll(1, 0) | ||
|
||
# Implemented as on mixup paper, page 3. | ||
lambda_param = float(torch._sample_dirichlet(torch.tensor([self.alpha, self.alpha]))[0]) | ||
batch_rolled.mul_(1.0 - lambda_param) | ||
batch.mul_(lambda_param).add_(batch_rolled) | ||
|
||
#target_rolled.mul_(1.0 - lambda_param) | ||
#target.mul_(lambda_param).add_(target_rolled) | ||
|
||
return batch, target, target_rolled, lambda_param | ||
|
||
def __repr__(self) -> str: | ||
s = self.__class__.__name__ + "(" | ||
s += "num_classes={num_classes}" | ||
s += ", p={p}" | ||
s += ", alpha={alpha}" | ||
s += ", inplace={inplace}" | ||
s += ")" | ||
return s.format(**self.__dict__) | ||
|
||
|
||
class RandomCutmix2(torch.nn.Module): | ||
"""Randomly apply Cutmix to the provided batch and targets. | ||
The class implements the data augmentations as described in the paper | ||
`"CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features" | ||
<https://arxiv.org/abs/1905.04899>`_. | ||
Args: | ||
num_classes (int): number of classes used for one-hot encoding. | ||
p (float): probability of the batch being transformed. Default value is 0.5. | ||
alpha (float): hyperparameter of the Beta distribution used for cutmix. | ||
Default value is 1.0. | ||
inplace (bool): boolean to make this transform inplace. Default set to False. | ||
""" | ||
|
||
def __init__(self, num_classes: int, p: float = 0.5, alpha: float = 1.0, inplace: bool = False) -> None: | ||
super().__init__() | ||
assert num_classes > 0, "Please provide a valid positive value for the num_classes." | ||
assert alpha > 0, "Alpha param can't be zero." | ||
|
||
self.num_classes = num_classes | ||
self.p = p | ||
self.alpha = alpha | ||
self.inplace = inplace | ||
|
||
def forward(self, batch: Tensor, target: Tensor) -> Tuple[Tensor, Tensor]: | ||
""" | ||
Args: | ||
batch (Tensor): Float tensor of size (B, C, H, W) | ||
target (Tensor): Integer tensor of size (B, ) | ||
Returns: | ||
Tensor: Randomly transformed batch. | ||
""" | ||
if batch.ndim != 4: | ||
raise ValueError(f"Batch ndim should be 4. Got {batch.ndim}") | ||
if target.ndim != 1: | ||
raise ValueError(f"Target ndim should be 1. Got {target.ndim}") | ||
if not batch.is_floating_point(): | ||
raise TypeError(f"Batch dtype should be a float tensor. Got {batch.dtype}.") | ||
if target.dtype != torch.int64: | ||
raise TypeError(f"Target dtype should be torch.int64. Got {target.dtype}") | ||
|
||
if not self.inplace: | ||
batch = batch.clone() | ||
target = target.clone() | ||
|
||
if torch.rand(1).item() >= self.p: | ||
return batch, target | ||
|
||
# It's faster to roll the batch by one instead of shuffling it to create image pairs | ||
batch_rolled = batch.roll(1, 0) | ||
target_rolled = target.roll(1, 0) | ||
|
||
# Implemented as on cutmix paper, page 12 (with minor corrections on typos). | ||
lambda_param = float(torch._sample_dirichlet(torch.tensor([self.alpha, self.alpha]))[0]) | ||
W, H = F.get_image_size(batch) | ||
|
||
r_x = torch.randint(W, (1,)) | ||
r_y = torch.randint(H, (1,)) | ||
|
||
r = 0.5 * math.sqrt(1.0 - lambda_param) | ||
r_w_half = int(r * W) | ||
r_h_half = int(r * H) | ||
|
||
x1 = int(torch.clamp(r_x - r_w_half, min=0)) | ||
y1 = int(torch.clamp(r_y - r_h_half, min=0)) | ||
x2 = int(torch.clamp(r_x + r_w_half, max=W)) | ||
y2 = int(torch.clamp(r_y + r_h_half, max=H)) | ||
|
||
batch[:, :, y1:y2, x1:x2] = batch_rolled[:, :, y1:y2, x1:x2] | ||
lambda_param = float(1.0 - (x2 - x1) * (y2 - y1) / (W * H)) | ||
|
||
#target_rolled.mul_(1.0 - lambda_param) | ||
#target.mul_(lambda_param).add_(target_rolled) | ||
|
||
return batch, target, target_rolled, lambda_param | ||
|
||
def __repr__(self) -> str: | ||
s = self.__class__.__name__ + "(" | ||
s += "num_classes={num_classes}" | ||
s += ", p={p}" | ||
s += ", alpha={alpha}" | ||
s += ", inplace={inplace}" | ||
s += ")" | ||
return s.format(**self.__dict__) |