-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b04ae9a
commit dd47c34
Showing
1 changed file
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
import numpy as np | ||
import data_transforms | ||
import data_iterators | ||
import pathfinder | ||
import lasagne as nn | ||
|
||
from collections import OrderedDict, namedtuple | ||
from functools import partial | ||
import lasagne.layers.dnn as dnn | ||
import lasagne | ||
import theano.tensor as T | ||
import utils | ||
|
||
restart_from_save = False | ||
rng = np.random.RandomState(33) | ||
|
||
# transformations | ||
p_transform = {'patch_size': (48, 48, 48), | ||
'mm_patch_size': (48, 48, 48), | ||
'pixel_spacing': (1., 1., 1.) | ||
} | ||
|
||
p_transform_augment = { | ||
'translation_range_z': [-3, 3], | ||
'translation_range_y': [-3, 3], | ||
'translation_range_x': [-3, 3], | ||
'rotation_range_z': [-180, 180], | ||
'rotation_range_y': [-180, 180], | ||
'rotation_range_x': [-180, 180] | ||
} | ||
|
||
positive_proportion = 0.5 | ||
|
||
properties = ['diameter', 'calcification', 'lobulation', 'malignancy', 'margin', 'sphericity', | ||
'spiculation', 'texture'] | ||
nproperties = len(properties) | ||
|
||
|
||
def label_prep_function(annotation,properties_included): | ||
patch_zyxd = annotation[:4] | ||
if patch_zyxd[-1] == 0: | ||
if len(properties_included)>0: | ||
return np.asarray([0] * len(properties_included), dtype='float32') | ||
else: | ||
return np.asarray([0] * len(properties), dtype='float32') | ||
else: | ||
label = [] | ||
properties_dict = annotation[-1] | ||
if len(properties_included)>0: | ||
for p in properties_included: | ||
label.append(properties_dict[p]/5.0) | ||
else: | ||
for p in properties: | ||
label.append(properties_dict[p]) | ||
return label | ||
|
||
|
||
|
||
# data preparation function | ||
def data_prep_function(data, patch_center, pixel_spacing, luna_origin, p_transform, | ||
p_transform_augment, world_coord_system, **kwargs): | ||
x, patch_annotation_tf = data_transforms.transform_patch3d(data=data, | ||
luna_annotations=None, | ||
patch_center=patch_center, | ||
p_transform=p_transform, | ||
p_transform_augment=p_transform_augment, | ||
pixel_spacing=pixel_spacing, | ||
luna_origin=luna_origin, | ||
world_coord_system=world_coord_system) | ||
x = data_transforms.hu2normHU(x) | ||
|
||
return x | ||
|
||
|
||
data_prep_function_train = partial(data_prep_function, p_transform_augment=p_transform_augment, | ||
p_transform=p_transform, world_coord_system=True) | ||
data_prep_function_valid = partial(data_prep_function, p_transform_augment=None, | ||
p_transform=p_transform, world_coord_system=True) | ||
|
||
# data iterators | ||
batch_size = 16 | ||
nbatches_chunk = 1 | ||
chunk_size = batch_size * nbatches_chunk | ||
|
||
train_valid_ids = utils.load_pkl(pathfinder.LUNA_VALIDATION_SPLIT_PATH) | ||
train_pids, valid_pids = train_valid_ids['train'], train_valid_ids['valid'] | ||
|
||
|
||
train_data_iterator = data_iterators.CandidatesPropertiesLunaDataGenerator(data_path=pathfinder.LUNA_DATA_PATH, | ||
batch_size=chunk_size, | ||
transform_params=p_transform, | ||
label_prep_fun=label_prep_function, | ||
nproperties=nproperties, | ||
data_prep_fun=data_prep_function_train, | ||
rng=rng, | ||
patient_ids=train_pids, | ||
full_batch=True, random=True, infinite=True, | ||
positive_proportion=positive_proportion, | ||
random_negative_samples=True, | ||
properties_included=["malignancy"]) | ||
|
||
valid_data_iterator = data_iterators.CandidatesLunaValidDataGenerator(data_path=pathfinder.LUNA_DATA_PATH, | ||
transform_params=p_transform, | ||
data_prep_fun=data_prep_function_valid, | ||
patient_ids=valid_pids, | ||
label_prep_fun=label_prep_function, | ||
properties_included=["malignancy"]) | ||
|
||
nchunks_per_epoch = train_data_iterator.nsamples / chunk_size | ||
max_nchunks = nchunks_per_epoch * 100 | ||
|
||
validate_every = int(1 * nchunks_per_epoch) | ||
save_every = int(1. * nchunks_per_epoch) | ||
|
||
learning_rate_schedule = { | ||
0: 1e-4, | ||
int(max_nchunks * 0.4): 6e-5, | ||
int(max_nchunks * 0.6): 3e-5, | ||
int(max_nchunks * 0.8): 1e-5, | ||
int(max_nchunks * 0.9): 0.5e-5 | ||
} | ||
|
||
# model | ||
conv3d = partial(dnn.Conv3DDNNLayer, | ||
filter_size=3, | ||
pad='same', | ||
W=nn.init.Orthogonal(), | ||
b=nn.init.Constant(0.01), | ||
nonlinearity=nn.nonlinearities.very_leaky_rectify) | ||
|
||
max_pool3d = dnn.MaxPool3DDNNLayer | ||
|
||
drop = lasagne.layers.DropoutLayer | ||
|
||
bn = lasagne.layers.batch_norm | ||
|
||
dense = partial(lasagne.layers.DenseLayer, | ||
W=lasagne.init.Orthogonal('relu'), | ||
b=lasagne.init.Constant(0.0), | ||
nonlinearity=lasagne.nonlinearities.rectify) | ||
|
||
|
||
|
||
# we reduce # filters by factor of 8 compared to original inception-v4 | ||
|
||
|
||
|
||
conv3d = partial(dnn.Conv3DDNNLayer, | ||
filter_size=3, | ||
pad='same', | ||
W=nn.init.HeNormal('relu'), | ||
b=nn.init.Constant(0.01), | ||
nonlinearity=nn.nonlinearities.rectify) | ||
|
||
n_filt_red_f = 8 | ||
def inception_resnet_v2_stem(lin): | ||
# in original inception-resnet-v2, conv stride is 2 | ||
l = conv3d(lin, 32//n_filt_red_f, pad='valid') | ||
l = conv3d(l, 32//n_filt_red_f, pad='valid') | ||
l = conv3d(l, 64//n_filt_red_f, pad='same') | ||
# in original inception-resnet-v2, stride is 2 | ||
a = max_pool3d(l, pool_size=3, stride=1) | ||
# in original inception-resnet-v2, conv stride is 2 | ||
b = conv3d(l, 96//n_filt_red_f, pad='valid') | ||
l = lasagne.layers.ConcatLayer([a, b]) | ||
|
||
a = conv3d(l, 64//n_filt_red_f, filter_size=1, pad='same') | ||
a = conv3d(a, 96//n_filt_red_f, filter_size=3, pad='valid') | ||
|
||
b = conv3d(l, 64//n_filt_red_f, filter_size=1, pad='same') | ||
b = conv3d(b, 64//n_filt_red_f, filter_size=(7,1,1), pad='same') | ||
b = conv3d(b, 64//n_filt_red_f, filter_size=(1,7,1), pad='same') | ||
b = conv3d(b, 64//n_filt_red_f, filter_size=(1,1,7), pad='same') | ||
b = conv3d(b, 96//n_filt_red_f, filter_size=3, pad='valid') | ||
l = lasagne.layers.ConcatLayer([a, b]) | ||
|
||
|
||
a = conv3d(l, 192//n_filt_red_f, filter_size=3, pad='valid') # in original inception-resnet-v2, conv stride should be 2 | ||
b = max_pool3d(l, pool_size=3, stride=1) # in original inception-resnet-v2, stride is 2 | ||
print a.output_shape | ||
print b.output_shape | ||
l = lasagne.layers.ConcatLayer([a, b]) | ||
|
||
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify) | ||
|
||
return l | ||
|
||
def inception_resnet_v2_A(lin): | ||
|
||
a = conv3d(lin, 32//n_filt_red_f, filter_size=1, pad='same') | ||
|
||
b = conv3d(lin, 32//n_filt_red_f, filter_size=1, pad='same') | ||
b = conv3d(b, 32//n_filt_red_f, filter_size=3, pad='same') | ||
|
||
c = conv3d(lin, 32//n_filt_red_f, filter_size=1, pad='same') | ||
c = conv3d(c, 48//n_filt_red_f, filter_size=3, pad='same') | ||
c = conv3d(c, 64//n_filt_red_f, filter_size=3, pad='same') | ||
|
||
l = lasagne.layers.ConcatLayer([a, b, c]) | ||
|
||
l = conv3d(l, 384//n_filt_red_f, filter_size=1, pad='same', nonlinearity=lasagne.nonlinearities.linear) | ||
|
||
l = lasagne.layers.ElemwiseSumLayer([l, lin]) | ||
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify) | ||
|
||
return l | ||
|
||
|
||
def inception_resnet_v2_reduction_A(lin): | ||
a = max_pool3d(lin, pool_size=3, stride=2) | ||
|
||
b = conv3d(lin, 384//n_filt_red_f, filter_size=3, stride=2, pad='valid') | ||
|
||
c = conv3d(lin, 256//n_filt_red_f, filter_size=1, pad='same') | ||
c = conv3d(c, 256//n_filt_red_f, filter_size=3, pad='same') | ||
c = conv3d(c, 384//n_filt_red_f, filter_size=3, stride=2, pad='valid') | ||
|
||
l = lasagne.layers.ConcatLayer([a, b, c]) | ||
|
||
return l | ||
|
||
|
||
def inception_resnet_v2_B(lin): | ||
a = conv3d(lin, 192//n_filt_red_f, filter_size=1, pad='same') | ||
|
||
b = conv3d(lin, 128//n_filt_red_f, filter_size=1, pad='same') | ||
b = conv3d(b, 160//n_filt_red_f, filter_size=(7,1,1), pad='same') | ||
b = conv3d(b, 160//n_filt_red_f, filter_size=(1,7,1), pad='same') | ||
b = conv3d(b, 192//n_filt_red_f, filter_size=(1,1,7), pad='same') | ||
|
||
l = lasagne.layers.ConcatLayer([a, b]) | ||
l = conv3d(l, 1154//n_filt_red_f, filter_size=1, pad='same', nonlinearity=lasagne.nonlinearities.linear) | ||
|
||
l = lasagne.layers.ElemwiseSumLayer([l, lin]) | ||
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify) | ||
|
||
return l | ||
|
||
|
||
def inception_resnet_v2_reduction_B(lin): | ||
a = max_pool3d(lin, pool_size=3, stride=2) | ||
|
||
b = conv3d(lin, 256//n_filt_red_f, filter_size=1, stride=1, pad='same') | ||
b = conv3d(b, 288//n_filt_red_f, filter_size=3, stride=2, pad='valid') | ||
|
||
c = conv3d(lin, 256//n_filt_red_f, filter_size=1, stride=1, pad='same') | ||
c = conv3d(c, 288//n_filt_red_f, filter_size=3, stride=2, pad='valid') | ||
|
||
|
||
d = conv3d(lin, 256//n_filt_red_f, filter_size=1, pad='same') | ||
d = conv3d(d, 288//n_filt_red_f, filter_size=3, pad='same') | ||
d = conv3d(d, 320//n_filt_red_f, filter_size=3, stride=2, pad='valid') | ||
|
||
l = lasagne.layers.ConcatLayer([a, b, c, d]) | ||
|
||
return l | ||
|
||
|
||
def inception_resnet_v2_C(lin): | ||
a = conv3d(lin, 192//n_filt_red_f, filter_size=1, pad='same') | ||
|
||
b = conv3d(lin, 192//n_filt_red_f, filter_size=1, pad='same') | ||
b = conv3d(b, 224//n_filt_red_f, filter_size=(3,1,1), pad='same') | ||
b = conv3d(b, 224//n_filt_red_f, filter_size=(1,3,1), pad='same') | ||
b = conv3d(b, 256//n_filt_red_f, filter_size=(1,1,3), pad='same') | ||
|
||
l = lasagne.layers.ConcatLayer([a, b]) | ||
l = conv3d(l, 2048//n_filt_red_f, filter_size=1, pad='same', nonlinearity=lasagne.nonlinearities.linear) | ||
|
||
l = lasagne.layers.ElemwiseSumLayer([l, lin]) | ||
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify) | ||
|
||
return l | ||
|
||
|
||
|
||
|
||
def build_model(): | ||
l_in = nn.layers.InputLayer((None,) + p_transform['patch_size']) | ||
l_din = lasagne.layers.DimshuffleLayer(l_in, pattern=[0,'x',1,2,3]) | ||
l_target = nn.layers.InputLayer((None,)) | ||
|
||
num_A_blocks = 1 | ||
num_B_blocks = 1 | ||
num_C_blocks = 1 | ||
|
||
l = inception_resnet_v2_stem(l_din) | ||
for i in range(num_A_blocks): | ||
l = inception_resnet_v2_A(l) | ||
l = inception_resnet_v2_reduction_A(l) | ||
for i in range(num_B_blocks): | ||
l = inception_resnet_v2_B(l) | ||
l = inception_resnet_v2_reduction_B(l) | ||
for i in range(num_C_blocks): | ||
l = inception_resnet_v2_C(l) | ||
|
||
l = dense(drop(l), 512) | ||
|
||
l_out = nn.layers.DenseLayer(l,1,nonlinearity=nn.nonlinearities.sigmoid, W=lasagne.init.Orthogonal(), | ||
b=lasagne.init.Constant(0)) | ||
|
||
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target) | ||
|
||
|
||
d_objectives_deterministic = {} | ||
d_objectives = {} | ||
|
||
|
||
def build_objective(model, deterministic=False): | ||
predictions = nn.layers.get_output(model.l_out, deterministic=deterministic) | ||
targets = T.flatten(nn.layers.get_output(model.l_target)) | ||
objective = lasagne.objectives.squared_error(predictions,targets) | ||
loss = T.mean(objective) | ||
return loss | ||
|
||
|
||
def build_updates(train_loss, model, learning_rate): | ||
updates = nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_out, trainable=True), learning_rate) | ||
return updates |