Lists (13)
Sort Name ascending (A-Z)
Starred repositories
Official inference repo for FLUX.1 models
AISystem 主要是指AI系统,包括AI芯片、AI编译器、AI推理和训练框架等AI全栈底层技术
[TMLR 2024] Efficient Large Language Models: A Survey
📚LeetCUDA: Modern CUDA Learn Notes with PyTorch for Beginners🐑, 200+ CUDA/Tensor Cores Kernels, HGEMM, FA-2 MMA etc.🔥
Xray panel supporting multi-protocol multi-user expire day & traffic & IP limit (Vmess & Vless & Trojan & ShadowSocks & Wireguard)
FlashInfer: Kernel Library for LLM Serving
Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor Operators
how to optimize some algorithm in cuda.
A fast communication-overlapping library for tensor/expert parallelism on GPUs.
✔(已完结)最全面的 深度学习 笔记【土堆 Pytorch】【李沐 动手学深度学习】【吴恩达 深度学习】
中文的C++ Template的教学指南。与知名书籍C++ Templates不同,该系列教程将C++ Templates作为一门图灵完备的语言来讲授,以求帮助读者对Meta-Programming融会贯通。(正在施工中)
🚀🚀 「大模型」2小时完全从0训练26M的小参数GPT!🌏 Train a 26M-parameter GPT from scratch in just 2h!
📝A simple and elegant markdown editor, available for Linux, macOS and Windows.
An extremely fast Python package and project manager, written in Rust.
解决Cursor在免费订阅期间出现以下提示的问题: You've reached your trial request limit. / Too many free trial accounts used on this machine. Please upgrade to pro. We have this limit in place to prevent abuse. Please l…
📚A curated list of Awesome LLM/VLM Inference Papers with codes: WINT8/4, FlashAttention, PagedAttention, Parallelism, MLA, etc.
The official GitHub page for the survey paper "A Survey on Mixture of Experts in Large Language Models".
SGLang is a fast serving framework for large language models and vision language models.
A throughput-oriented high-performance serving framework for LLMs
My learning notes/codes for ML SYS.
Integrate the DeepSeek API into popular softwares
Production-tested AI infrastructure tools for efficient AGI development and community-driven innovation
Mooncake is the serving platform for Kimi, a leading LLM service provided by Moonshot AI.
🤖 𝗟𝗲𝗮𝗿𝗻 for 𝗳𝗿𝗲𝗲 how to 𝗯𝘂𝗶𝗹𝗱 an end-to-end 𝗽𝗿𝗼𝗱𝘂𝗰𝘁𝗶𝗼𝗻-𝗿𝗲𝗮𝗱𝘆 𝗟𝗟𝗠 & 𝗥𝗔𝗚 𝘀𝘆𝘀𝘁𝗲𝗺 using 𝗟𝗟𝗠𝗢𝗽𝘀 best practices: ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 12 𝘩𝘢𝘯𝘥𝘴-𝘰𝘯 𝘭𝘦𝘴𝘴𝘰𝘯𝘴
A Flexible Framework for Experiencing Cutting-edge LLM Inference Optimizations
Get up and running with Llama 3.3, DeepSeek-R1, Phi-4, Gemma 3, Mistral Small 3.1 and other large language models.
强化学习中文教程(蘑菇书🍄),在线阅读地址:https://datawhalechina.github.io/easy-rl/