# Pull the image (tag 0.0.1 -- subject to change in future versions)
docker pull xbalbinus/pytc-client:0.0.1
# Expose ports to run the backend servers on Docker
docker run -it -p 4242:4242 -p 4243:4243 -p 4244:4244 -p 6006:6006 --shm-size=8g xbalbinus/pytc-client:0.0.1
- Create a Virtual Environment via. Conda
conda create -n pytc python=3.9
conda activate pytc
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
Alternatively, dependencies can be installed with native Python via. the following:
# Create a venv
python -m venv .venv
# if running in windows, replace the line above with '.\.venv\Scripts\activate.bat'
source .venv/bin/activate
# Install dependencies
pip install torch torchvision cuda-python
In the rare event that your device does not support CUDA, you may run the following respectively:
# If using a conda environment
conda create -n pytc python=3.9
conda activate pytc
conda install pytorch torchvision
# If installing via native python
python -m venv .venv
source .venv/bin/activate
# if running in windows, replace the line above with '.\.venv\Scripts\activate.bat'
pip install torch torchvision
- Client
cd client
npm install
npm run build
- API Server:
cd server_api
pip install -r requirements.txt
- Pytc-connectomics:
In root folder,
git clone https://github.com/zudi-lin/pytorch_connectomics.git
cd pytorch_connectomics
pip install --editable .
# if running on mac or linux:
./start.sh
# if running on windows:
./start.bat
In a separate terminal
cd client
npm run electron
Below is a link to a video demo: showing how to set up and run the app: video demo