-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
01187da
commit d7d7c28
Showing
1 changed file
with
333 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,333 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"provenance": [], | ||
"authorship_tag": "ABX9TyNVdpHfJPPUhEbP4iWXR/vP", | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/TonmoyTalukder/deep-learning-explore/blob/main/PyTorch_Explore/8_Save_and_Load_Model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"\n", | ||
"\n", | ||
"```\n", | ||
"# Methods\n", | ||
"\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"\n", | ||
"torch.save(arg, PATH)\n", | ||
"torch.load(PATH)\n", | ||
"model.load_sate_dict(arg)\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"# Save\n", | ||
"\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"\n", | ||
"#### COMPLETE MODEL ####\n", | ||
"torch.save(arg, PATH)\n", | ||
"model = torch.load(PATH)\n", | ||
"model.eval()\n", | ||
"\n", | ||
"#### STATE DICT ####\n", | ||
"torch.save(model.state_dict(), PATH) # it only saves parameters\n", | ||
"model = Model(*args, **kwargs)\n", | ||
"model.load_state_dict(torch.load(PATH))\n", | ||
"model.eval()\n", | ||
"```\n", | ||
"\n" | ||
], | ||
"metadata": { | ||
"id": "0iz1V7eqW-Hf" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# Save Load Example\n", | ||
"\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"\n", | ||
"class Model(nn.Module):\n", | ||
" def __init__(self, n_input_features):\n", | ||
" super(Model, self).__init__()\n", | ||
" self.linear = nn.Linear(n_input_features, 1)\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" y_pred = torch.sigmoid(self.linear())\n", | ||
" return y_pred\n", | ||
"\n", | ||
"model = Model(n_input_features=6)\n", | ||
"\n", | ||
"print(model.state_dict())\n", | ||
"# train model ..." | ||
], | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "HVnVCOtSLQ0R", | ||
"outputId": "88f20b04-3eb5-4fc6-eded-148640e5344a" | ||
}, | ||
"execution_count": 20, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
"OrderedDict([('linear.weight', tensor([[ 0.0033, 0.0729, 0.1773, 0.3808, -0.3613, 0.0527]])), ('linear.bias', tensor([0.2571]))])\n" | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"for param in model.parameters():\n", | ||
" print(param)" | ||
], | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "6Q0FkDWIS5dQ", | ||
"outputId": "bb35a9e9-f927-4dda-dbe3-3cbb9562dff1" | ||
}, | ||
"execution_count": 21, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
"Parameter containing:\n", | ||
"tensor([[ 0.0033, 0.0729, 0.1773, 0.3808, -0.3613, 0.0527]],\n", | ||
" requires_grad=True)\n", | ||
"Parameter containing:\n", | ||
"tensor([0.2571], requires_grad=True)\n" | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"#### LAZY OPTION ####\n", | ||
"FILE = \"lazy_model.pth\"\n", | ||
"torch.save(model, FILE) # Save\n", | ||
"\n", | ||
"modeltest = torch.load(FILE) # Load\n", | ||
"modeltest.eval()\n", | ||
"\n", | ||
"for param in modeltest.parameters():\n", | ||
" print(param)" | ||
], | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "XaTgitedMRUv", | ||
"outputId": "e78048a0-f0f6-488d-a907-2fefb4a7be6b" | ||
}, | ||
"execution_count": 22, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
"Parameter containing:\n", | ||
"tensor([[ 0.0033, 0.0729, 0.1773, 0.3808, -0.3613, 0.0527]],\n", | ||
" requires_grad=True)\n", | ||
"Parameter containing:\n", | ||
"tensor([0.2571], requires_grad=True)\n" | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"#### PREFARABLE WAY ####\n", | ||
"FILE = \"pref_model.pth\"\n", | ||
"torch.save(model.state_dict(), FILE) # Save\n", | ||
"\n", | ||
"loaded_model = Model(n_input_features=6)\n", | ||
"loaded_model.load_state_dict(torch.load(FILE)) # Load\n", | ||
"modeltest.eval()\n", | ||
"\n", | ||
"for param in loaded_model.parameters():\n", | ||
" print(param)" | ||
], | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "pDt8KUK3M4cm", | ||
"outputId": "4d43fe3a-e64a-4af5-efd8-c44ea8811c16" | ||
}, | ||
"execution_count": 23, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
"Parameter containing:\n", | ||
"tensor([[ 0.0033, 0.0729, 0.1773, 0.3808, -0.3613, 0.0527]],\n", | ||
" requires_grad=True)\n", | ||
"Parameter containing:\n", | ||
"tensor([0.2571], requires_grad=True)\n" | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# Saving Checkpoints\n", | ||
"\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"\n", | ||
"class Model(nn.Module):\n", | ||
" def __init__(self, n_input_features):\n", | ||
" super(Model, self).__init__()\n", | ||
" self.linear = nn.Linear(n_input_features, 1)\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" y_pred = torch.sigmoid(self.linear())\n", | ||
" return y_pred\n", | ||
"\n", | ||
"model = Model(n_input_features=6)\n", | ||
"learning_rate = 0.01\n", | ||
"optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)\n", | ||
"\n", | ||
"print(optimizer.state_dict())\n", | ||
"# train model ...\n", | ||
"\n", | ||
"checkpoint = {\n", | ||
" \"epoch\": 90,\n", | ||
" \"model_state\": model.state_dict(),\n", | ||
" \"optim_state\": optimizer.state_dict()\n", | ||
"}\n", | ||
"\n", | ||
"torch.save(checkpoint, \"checkpoint.pth\")" | ||
], | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "iRMKaYZbS9jh", | ||
"outputId": "c86f575c-9207-4e69-bb87-675de9bcac66" | ||
}, | ||
"execution_count": 25, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
"{'state': {}, 'param_groups': [{'lr': 0.01, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'differentiable': False, 'params': [0, 1]}]}\n" | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"loaded_checkpoint = torch.load(\"checkpoint.pth\")\n", | ||
"epoch = loaded_checkpoint[\"epoch\"]\n", | ||
"\n", | ||
"model = Model(n_input_features=6)\n", | ||
"optimizer = torch.optim.SGD(model.parameters(), lr=0)\n", | ||
"\n", | ||
"model.load_state_dict(checkpoint[\"model_state\"])\n", | ||
"optimizer.load_state_dict(checkpoint[\"optim_state\"])\n", | ||
"\n", | ||
"print(optimizer.state_dict())" | ||
], | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "FaLi-2P7Tgvj", | ||
"outputId": "5e183e99-0af7-4ba0-fb3e-3a5c430128b3" | ||
}, | ||
"execution_count": 26, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
"{'state': {}, 'param_groups': [{'lr': 0.01, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'differentiable': False, 'params': [0, 1]}]}\n" | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"\n", | ||
"\n", | ||
"```\n", | ||
"# GPU | CPU Saving and Loading\n", | ||
"\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"\n", | ||
"# Save on GPU, Load on CPU\n", | ||
"device = torch.device(\"cuda\")\n", | ||
"model.to(device)\n", | ||
"torch.save(model.state_dict(), PATH)\n", | ||
"\n", | ||
"device = torch.device(\"cpu\")\n", | ||
"model = Model(*args, **kwargs)\n", | ||
"model.load_state_dict(torch.load(PATH, map_location=device))\n", | ||
"\n", | ||
"# Save on GPU, Load on GPU\n", | ||
"device = torch.device(\"cuda\")\n", | ||
"model.to(device)\n", | ||
"torch.save(model.state_dict(), PATH)\n", | ||
"\n", | ||
"model = Model(*args, **kwargs)\n", | ||
"model.load_state_dict(torch.load(PATH))\n", | ||
"model.to(device)\n", | ||
"\n", | ||
"# Save on CPU, Load on GPU\n", | ||
"torch.save(model.state_dict(), PATH)\n", | ||
"\n", | ||
"device = torch.device(\"cuda\")\n", | ||
"model = Model(*args, **kwargs)\n", | ||
"model.load_state_dict(torch.load(PATH, map_location=\"cuda:0\"))\n", | ||
"model.to(device) \n", | ||
"```\n", | ||
"\n" | ||
], | ||
"metadata": { | ||
"id": "HwdaDhRQXWYI" | ||
} | ||
} | ||
] | ||
} |