Skip to content

Commit

Permalink
updated readme
Browse files Browse the repository at this point in the history
  • Loading branch information
suprosanna committed Aug 31, 2021
1 parent e2a71dc commit d539c74
Showing 1 changed file with 39 additions and 20 deletions.
59 changes: 39 additions & 20 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -137,9 +137,21 @@ and process the graphs in OGB compatible format.

Go to `./VesselGraph/source/baseline_models/link_prediction/` and select a `MODEL` directory to run

e.g. to run GNN, one needs to use the following `python3 gnn.py --dataset DATASET_NAME`.

For the dataset name, we follow the OGB convention. For example, to run the BALBc_no1 whole brain with a spatial splitting strategy, and without edge features (edge attributes),
Model Name | Script
-----|---------------
Adamic Adar|`python3 seal_link_pred.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr --use_heuristic AA`
Common Neighbors |`python3 seal_link_pred.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr --use_heuristic CN`
Resource Allocation |`python3 seal_link_pred.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr --use_heuristic RA`
Matrix Factorization |`python3 mf.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr`
MLP|`python3 mlp.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr`
GCN GCN |`python3 gnn.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr`
GCN GCN + embeddings |`python3 gnn.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr --use_node_embedding`
GCN SAGE + embeddings|`python3 gnn.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr --use_node_embedding --use_sage`
GCN SAGE |`python3 gnn.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr --use_sage`
SEAL |`python3 seal_link_pred.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr`


For the dataset name, we follow the OGB convention. For example, to run the `BALBc_no1` whole brain with a spatial splitting strategy, and without edge features (edge attributes),
use `python3 gnn.py --dataset ogbl-BALBc_no1_spatial_no_edge_attr`.

We also provide a memory-friendly alternative (a selected Region of Interest of the entire graph). To run the models on the selected region of interest,
Expand All @@ -149,42 +161,46 @@ If you are unsure what options are available, simply run the following command t

use `python3 gnn.py --dataset ogbl-xyz`.

*Download Trained Weight*
2. **Testing**

*Download Trained Weight* and place them in the respective model folder
|Model Name | Checkpoint |
-----|---------------
Adamic Adar|[heuristic, not applicable]
Common Neighbors |[heuristic, not applicable]
Resource Allocation |[heuristic, not applicable]
Matrix Factorization |[download](https://syncandshare.lrz.de/getlink/fi2SY3S11Z1jdnvPnh5xn5RK/MF)
MLP|[download](https://syncandshare.lrz.de/getlink/fi2SY3S11Z1jdnvPnh5xn5RK/MF)
MLP|[download](https://syncandshare.lrz.de/getlink/fi9RWSLJ9Zmdbr1n74zDbZ9R/MLP)
GCN GCN |[download](https://syncandshare.lrz.de/getlink/fiLN8QNyXdHm3jNUkgTya3SA/GNN_GCN)
GCN GCN + embeddings |[download](https://syncandshare.lrz.de/getlink/fiLiTAy7xgNJp69SyYjKj6jc/GNN_GCN_embeddings)
GCN SAGE + embeddings |[download](https://syncandshare.lrz.de/getlink/fiEb3iZrrU15PGkNemiZLiXi/GNN_SAGE_embeddings)
GCN SAGE |[download](https://syncandshare.lrz.de/getlink/fi2TtEzMKUSxastBvEGmUjzx/GNN_SAGE)
SEAL |[download](https://syncandshare.lrz.de/getlink/fiGbhGhyYFCyqGfnWqsjKbHb/SEAL)

2. **Testing**

Go to `./VesselGraph/source/baseline_models/link_prediction/` and select go a `MODEL` directory to run

e.g. to run GNN, one needs to use the following `python3 gnn.py --test_only --dataset DATASET_NAME`

For the dataset name, we follow the OGB convention. For example, to run the BALBc_no1 whole brain with minimum radius labels,
use `python3 gnn.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg`.

We also provide a memory-friendly alternative (a selected Region of Interest of the entire graph). To run the models on the selected region of interest,
use `python3 gnn.py --dataset ogbn-node_vessap_roi3_pb_minRadiusAvg`.

If you are unsure what options are available, simply run the following command that will list all available datasets:

use `python3 gnn.py --dataset ogbn-xyz`.
e.g. to run GNN, one needs to use the following `python3 gnn.py --load_state_dict --test_only --dataset DATASET_NAME`

The same applies for the other models
#### 2. Node Classification task

1. **Training**
Go to `./VesselGraph/source/baseline_models/node_classification/` and select a `MODEL` directory to run

Model Name | Script
-----|---------------
GCN | `python3 gnn.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg`
GraphSAGE | `python3 gnn.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg --use_sage`
GraphSAINT | `python3 graph_saint.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg`
SIGN | `python3 sign.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg`
Cluster-GCN | `python3 cluster_gcn.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg`
MLP | `python3 mlp.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg`
SpecMLP-W + C&S | `python3 mlp_cs.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg`
SpecMLP-W + C&S + Node2Vec| `python3 mlp_cs.py --dataset ogbn-BALBc_no1_pb_minRadiusAvg --use_embed`

2. **Testing**

*Download Trained Weight*
*Download Trained Weight* and place them in the respective model folder
|Model Name | Checkpoint |
-----|---------------
GCN|[download](https://syncandshare.lrz.de/getlink/fi7P51t9pk7Tm7gU83ABi7x2/gnn)
Expand All @@ -196,8 +212,11 @@ MLP|[download](https://syncandshare.lrz.de/getlink/fiH4GzQvCtS728iDec4mGWeq/mlp)
SpecMLP-W + C\&S |[download](https://syncandshare.lrz.de/getlink/fiKJdZz19iAQCPmPxrFNPRQ9/mlp_cs)
SpecMLP-W + C\&S + N2Vec|[download](https://syncandshare.lrz.de/getlink/fiWahsBTS6uAvEFFLqpzaThN/mlp_cs_node2vec)

2. **Testing**
Go to `./VesselGraph/source/baseline_models/node_classification/` and select go a `MODEL` directory to run

e.g. to run GNN, one needs to use the following `python3 gnn.py --load_state_dict --test_only --dataset DATASET_NAME`

The same applies for the other models

## Contribute

Expand Down

0 comments on commit d539c74

Please sign in to comment.