Skip to content

A Fitting, Scoring and Predicting Toolkit for Transformer Series Models.

License

Notifications You must be signed in to change notification settings

jiangxinjxau/transformers_sklearn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

transformers_sklearn

A Fitting, Scoring and Predicting Toolkit for Transformer Series Models.

transformers_sklearn aims at bringing Transformer series models to non-specialists.

Main requirements

Architecture

transformers_sklearn wrap the powerful APIs of transformers into three class. They are BERTologyClassifier for classification task, BERTologyNERClassifier for name entity recognition(NER) task and BERTologyRegressor for regression task. Within each class, there are three methods, which are fit for fine-tuning the pre-trained models downloaded from community, score for scoring the performance of fine-tuned model, and predict for predicting the labels of given datasets.

fit and score methods accept two parameters, X and y. The type of X and y could be list, ndarray and DataFrame. predict only need X.

Install

git clone https://github.com/trueto/transformers_sklearn
cd transformers_sklearn
pip install .

Tutorials

Classification tasks

English

Fine-tuning and scoring BERT model on MRPC corpus The whole code is as following:

import pandas as pd
from transformers_sklearn import BERTologyClassifier

if __name__ == '__main__':
    ## 1. preparing X,y
    train_df = pd.read_csv('datasets/mrpc/train.txt',sep='\t',names=['label','id1','id2','s1','s2'])
    X_train = pd.concat([train_df['s1'],train_df['s2']],axis=1)
    y_train = train_df['label']

    test_df = pd.read_csv('datasets/mrpc/test.txt', sep='\t', names=['label', 'id1', 'id2', 's1', 's2'])
    X_test = pd.concat([test_df['s1'], test_df['s2']], axis=1)
    y_test = test_df['label']

    ## 2. customize the model
    cls = BERTologyClassifier(
        model_type='bert',
        model_name_or_path='bert-base-cased',
        data_dir='ts_data/mrpc',
        output_dir='results/mrpc',
        num_train_epochs=3,
        learning_rate=5e-5
    )

    ## 3. fit
    cls.fit(X_train,y_train)

    ## 4. score
    report = cls.score(X_test,y_test)

    with open('mrpc.txt','w',encoding='utf8') as f:
        f.write(report)

Running code above, the following result will be returned:

***** Eval results 50 *****acc = 0.7360406091370558
acc_and_f1 = 0.7810637828293975
f1 = 0.8260869565217391

***** Eval results 100 *****acc = 0.6802030456852792
acc_and_f1 = 0.707748581666169
f1 = 0.7352941176470589

***** Eval results 150 *****acc = 0.8121827411167513
acc_and_f1 = 0.8418552594472646
f1 = 0.8715277777777778

***** Eval results 200 *****acc = 0.817258883248731
acc_and_f1 = 0.8452491599342247
f1 = 0.8732394366197184

***** Eval results 250 *****acc = 0.8096446700507615
acc_and_f1 = 0.8367642588003353
f1 = 0.8638838475499092

***** Eval results 300 *****acc = 0.8121827411167513
acc_and_f1 = 0.840488533678943
f1 = 0.8687943262411348

Chinese

Fine-tuning and scoring BERT model on LCQMC corpus The whole code is as following:

import pandas as pd
from transformers_sklearn import BERTologyClassifier
from sklearn.metrics import classification_report

if __name__ == '__main__':
    ## 1. preparing X,y
    train_df = pd.read_csv('datasets/lcqmc/train.tsv',sep='\t',names=['s1','s2','label'])
    X_train = pd.concat([train_df['s1'],train_df['s2']],axis=1)
    y_train = train_df['label']

    dev_df = pd.read_csv('datasets/lcqmc/dev.tsv', sep='\t', names=['s1', 's2','label'])
    X_dev = pd.concat([dev_df['s1'], dev_df['s2']], axis=1)
    y_dev = dev_df['label']

    test_df = pd.read_csv('datasets/lcqmc/test.tsv', sep='\t', names=['s1', 's2', 'label'])
    X_test = pd.concat([test_df['s1'], test_df['s2']], axis=1)
    y_test = test_df['label']

    ## 2. customize the model
    cls = BERTologyClassifier(
        model_type='bert',
        model_name_or_path='bert-base-chinese',
        data_dir='ts_data/lcqmc',
        output_dir='results/lcqmc',
        num_train_epochs=3,
        learning_rate=5e-5
    )
    #
    ## 3. fit
    cls.fit(X_train,y_train)
    #
    ## 4. score
    report = cls.score(X_dev,y_dev)
    with open('lcqmc.txt','w',encoding='utf8') as f:
        f.write(report)

    ## 5. predict
    y_pred = cls.predict(X_test)
    test_report = classification_report(y_test,y_pred,digits=4)
    with open('lcqmc_test.txt','w',encoding='utf8') as f:
        f.write(test_report)

Running code above, the following result will be returned:

 precision    recall  f1-score   support

           0     0.8919    0.8777    0.8848      4400
           1     0.8797    0.8937    0.8866      4402

    accuracy                         0.8857      8802
   macro avg     0.8858    0.8857    0.8857      8802
weighted avg     0.8858    0.8857    0.8857      8802

NER tasks

English

Fine-tuning and scoring BERT model on GMBNER corpus The whole code is as following:

import pandas as pd
from sklearn.model_selection import train_test_split
from transformers_sklearn import BERTologyNERClassifer

if __name__ == '__main__':

    data_df = pd.read_csv('datasets/gmbner/ner_dataset.csv',encoding="utf8")
    data_df.fillna(method="ffill",inplace=True)
    value_counts = data_df['Tag'].value_counts()
    label_list = list(value_counts.to_dict().keys())

    # ## 1. preparing datasets
    X = []
    y = []
    for label, batch_df in data_df.groupby(by='Sentence #',sort=False):
        words = batch_df['Word'].tolist()
        labels = batch_df['Tag'].tolist()
        assert len(words) == len(labels)
        X.append(words)
        y.append(labels)

    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.1,random_state=520)

    ## 2. customize model
    ner = BERTologyNERClassifer(
        labels=label_list,
        model_type='bert',
        model_name_or_path='bert-base-cased',
        data_dir='ts_data/gmbner',
        output_dir='results/gmbner',
        num_train_epochs=3,
        learning_rate=5e-5,
        logging_steps=50,
        save_steps=50,
        overwrite_output_dir=True
    )
    #
   ## 3. fit
    ner.fit(X_train, y_train)
    # # # #
    ## 4. score
    report = ner.score(X_test, y_test)
    with open('gmbner.txt', 'w', encoding='utf8') as f:
        f.write(report)

Chinese

Fine-tuning and scoring BERT model on MSRANER corpus The whole code is as following:

import pandas as pd
from transformers_sklearn import BERTologyNERClassifer

tag_dict = {
    'o': 'O',
    'nr': 'Per',
    'ns': 'Adr',
    'nt': 'Org'
}
def get_X_y(file_path):
    words_list = []
    labels_list = []
    with open(file_path,'r', encoding='utf8') as f:
        for line in f.readlines():
            line = line.strip()
            words = []
            labels = []
            for sequence in line.split(' '):
                tokens = sequence.split('/')[0]
                tag = sequence.split('/')[-1]
                tlen = len(tokens)
                if tag == 'o':
                    labels = labels + ['O'] * tlen
                else:
                    labels = labels + ['B-' + tag_dict[tag]] + (tlen - 1) * ['I-' + tag_dict[tag]]
            assert len(words) == len(labels)
            words_list.append(words)
            labels_list.append(labels)

    return words_list,labels_list

if __name__ == '__main__':
    ## 1. preparing X,y
    X_train, y_train = get_X_y('datasets/msraner/train.txt')

    X_test, y_test = get_X_y('datasets/msraner/test.txt')

    ## 2. customize model
    ner = BERTologyNERClassifer(
        model_type='bert',
        model_name_or_path='bert-base-chinese',
        data_dir='ts_data/msraner',
        output_dir='results/msraner',
        num_train_epochs=3,
        learning_rate=5e-5
    )

    ## 3. fit
    ner.fit(X_train, y_train)

    ## 4. score
    report = ner.score(X_test,y_test)
    with open('msraner.txt','w',encoding='utf8') as f:
        f.write(report)

Regression task

Fine-tuning and scoring BERT model on STS-B corpus The whole code is as following:

import pandas as pd
from transformers_sklearn import BERTologyRegressor

if __name__ == '__main__':
    ## 1. preparing X,y
    train_df = pd.read_csv('datasets/sts-b/train.tsv',sep='\t')
    X_train = pd.concat([train_df['sentence1'],train_df['sentence2']],axis=1)
    y_train = train_df['score']

    dev_df = pd.read_csv('datasets/sts-b/dev.tsv', sep='\t')
    X_dev = pd.concat([dev_df['sentence1'], dev_df['sentence2']], axis=1)
    y_dev = dev_df['score']

    test_df = pd.read_csv('datasets/sts-b/test.tsv', sep='\t')
    X_test = pd.concat([test_df['sentence1'], test_df['sentence2']], axis=1)

    ## 2. customize the model
    cls = BERTologyRegressor(
        model_type='bert',
        model_name_or_path='bert-base-cased',
        data_dir='ts_data/sts-b',
        output_dir='results/sts-b',
        num_train_epochs=3,
        learning_rate=5e-5
    )
    #
    ## 3. fit
    cls.fit(X_train,y_train)
    #
    ## 4. score
    report = cls.score(X_dev,y_dev)
    with open('sts-b.txt','w',encoding='utf8') as f:
        f.write(report)

    ## 5. predict
    y_pred = cls.predict(X_test)

    temp_df = X_test.copy()
    temp_df['score'] = y_pred
    temp_df.to_csv('sts-b.tsv',index=False)

About

A Fitting, Scoring and Predicting Toolkit for Transformer Series Models.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%