-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
200 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
import tensorflow_quantum as tfq | ||
import tensorflow as tf | ||
import cirq | ||
import sympy | ||
import numpy as np | ||
from sklearn import datasets as ds | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.preprocessing import MinMaxScaler | ||
from stable_baselines3 import SAC | ||
import matplotlib.pyplot as plt | ||
|
||
circle_data, circle_labels = ds.make_circles(300, noise=0.2, factor=0.3, shuffle=True) | ||
circle_data = MinMaxScaler().fit_transform(circle_data) | ||
|
||
#plt.scatter(circle_data[circle_labels == 0][:,0], circle_data[circle_labels == 0][:,1], label='0', color='blue') | ||
#plt.scatter(circle_data[circle_labels == 1][:,0], circle_data[circle_labels == 1][:,1], label='1', color='red') | ||
#plt.show() | ||
|
||
# Quantum NN | ||
def convert_data(data, qubits, test=False): | ||
cs = [] | ||
for i in data: | ||
cir = cirq.Circuit() | ||
cir += cirq.rx(i[0] * np.pi).on(qubits[0]) | ||
cir += cirq.rz(i[0] * np.pi).on(qubits[0]) | ||
cir += cirq.rx(i[1] * np.pi).on(qubits[1]) | ||
cir += cirq.rz(i[1] * np.pi).on(qubits[1]) | ||
cs.append(cir) | ||
if test: | ||
return tfq.convert_to_tensor([cs]) | ||
return tfq.convert_to_tensor(cs) | ||
|
||
def encode(data, labels, qubits): | ||
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=.2, random_state=43) | ||
return convert_data(X_train, qubits), convert_data(X_test, qubits), y_train, y_test | ||
|
||
def layer(circuit, qubits, params): | ||
circuit += cirq.CNOT(qubits[0], qubits[1]) | ||
circuit += cirq.ry(params[0]).on(qubits[0]) | ||
circuit += cirq.ry(params[1]).on(qubits[1]) | ||
circuit += cirq.rz(params[2]).on(qubits[0]) | ||
circuit += cirq.rz(params[3]).on(qubits[1]) | ||
return circuit | ||
|
||
def model_circuit(qubits, depth): | ||
cir = cirq.Circuit() | ||
num_params = depth * 4 | ||
params = sympy.symbols("q0:%d"%num_params) | ||
for i in range(depth): | ||
cir = layer(cir, qubits, params[i * 4:i * 4 + 4]) | ||
return cir | ||
|
||
qs = [cirq.GridQubit(0, i) for i in range(2)] | ||
d = 6 | ||
X_train, X_test, y_train, y_test = encode(circle_data, circle_labels, qs) | ||
c = model_circuit(qs, d) | ||
readout_operators = [cirq.Z(qs[0])] | ||
|
||
es = 150 | ||
bs = len(X_train) | ||
|
||
def encoding(size, num_q, num_d, struct, weights, error): | ||
state = np.zeros(shape=(size, 8)) | ||
for i in range(len(weights)): | ||
q = i % num_q | ||
#print(weights[i], self.struct[i], q, i//self.max_qubits, self.max_qubits, self.max_depth, 0 if self.ins is None else 1) | ||
state[i] = [-error, weights[i], struct[i], q, i//num_q, num_q, num_d, 0] | ||
return state.flatten() | ||
|
||
def cnn_enc(max_q, max_d, num_q, struct, weights, error): | ||
state = np.zeros(shape=(max_q, max_d, 5)) | ||
for i in range(len(weights)): | ||
qubit_number = i % num_q | ||
depth_number = i // num_q | ||
state[qubit_number][depth_number][struct[i]] = weights[i] | ||
state[:,:,3] = 0 | ||
state[:,:,4] = error | ||
return state.transpose(2, 0, 1) | ||
|
||
sac_agent = SAC.load("sac_mlp_large") | ||
sac_cnn_agent = SAC.load("sac_cnn_20_20_150") | ||
opter = tf.keras.optimizers.Adam(lr=0.01) | ||
|
||
y_test = np.expand_dims(y_test, axis=-1) | ||
y_train = np.expand_dims(y_train, axis=-1) | ||
|
||
mlp_mins_train = [] | ||
cnn_mins_train = [] | ||
grad_mins_train = [] | ||
mixed_mins_train = [] | ||
mlp_mins_val = [] | ||
cnn_mins_val = [] | ||
grad_mins_val = [] | ||
mixed_mins_val = [] | ||
|
||
rep = 3 | ||
|
||
for it in range(rep): | ||
print(it) | ||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
#layer1 = tfq.layers.PQC(c, readout_operators, repetitions=1000, differentiator=tfq.differentiators.ParameterShift())(inputs) | ||
layer1 = tfq.layers.PQC(c, readout_operators, differentiator=tfq.differentiators.Adjoint())(inputs) | ||
vqc = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
vqc.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(lr=0.01), metrics=['acc']) | ||
|
||
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
#layer1 = tfq.layers.PQC(c, readout_operators, repetitions=1000, differentiator=tfq.differentiators.ParameterShift())(inputs) | ||
layer1 = tfq.layers.PQC(c, readout_operators, differentiator=tfq.differentiators.Adjoint())(inputs) | ||
sac_vqc = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
#layer1 = tfq.layers.PQC(c, readout_operators, repetitions=1000, differentiator=tfq.differentiators.ParameterShift())(inputs) | ||
layer1 = tfq.layers.PQC(c, readout_operators, differentiator=tfq.differentiators.Adjoint())(inputs) | ||
sac_cnn_vqc = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
#layer1 = tfq.layers.PQC(c, readout_operators, repetitions=1000, differentiator=tfq.differentiators.ParameterShift())(inputs) | ||
layer1 = tfq.layers.PQC(c, readout_operators, differentiator=tfq.differentiators.Adjoint())(inputs) | ||
mixed = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
#layer1 = tfq.layers.PQC(c, readout_operators, repetitions=1000, differentiator=tfq.differentiators.ParameterShift())(inputs) | ||
layer1 = tfq.layers.PQC(c, readout_operators, differentiator=tfq.differentiators.Adjoint())(inputs) | ||
mixed_test = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
mixed_test.set_weights(vqc.get_weights()) | ||
|
||
sac_vqc.set_weights(vqc.get_weights()) | ||
sac_cnn_vqc.set_weights(vqc.get_weights()) | ||
mixed.set_weights(vqc.get_weights()) | ||
history = vqc.fit(X_train, y_train, epochs=es, batch_size=bs, validation_data=(X_test, y_test)) | ||
|
||
sac_loss = [] | ||
sac_val_loss = [] | ||
sac_cnn_loss = [] | ||
sac_cnn_val_loss = [] | ||
mixed_loss = [] | ||
mixed_val_loss = [] | ||
|
||
for i in range(es): | ||
print(i, es) | ||
indexes = np.random.choice(len(X_train), len(X_train)) | ||
|
||
# SAC | ||
sac_error = loss_fn(y_train[indexes], sac_vqc(tf.gather(X_train, indexes))).numpy() | ||
sac_enc = encoding(400, 2, d * 2, [1, 1, 2, 2] * d, sac_vqc.trainable_variables[0].numpy(), sac_error) | ||
action, _ = sac_agent.predict(sac_enc) | ||
sac_vqc.set_weights([action[:vqc.trainable_variables[0].shape[0]]]) | ||
|
||
# SAC_CNN | ||
sac_cnn_error = loss_fn(y_train[indexes], sac_cnn_vqc(tf.gather(X_train, indexes))).numpy() | ||
sac_cnn_enc = cnn_enc(20, 20, 2, [1, 1, 2, 2] * d, sac_cnn_vqc.trainable_variables[0].numpy(), sac_cnn_error) | ||
action, _ = sac_cnn_agent.predict(sac_cnn_enc) | ||
sac_cnn_vqc.set_weights([action[:vqc.trainable_variables[0].shape[0]]]) | ||
|
||
with tf.GradientTape() as tape: | ||
loss = loss_fn(y_train[indexes], mixed(tf.gather(X_train, indexes))) | ||
grads = tape.gradient(loss, mixed.trainable_variables) | ||
opter.apply_gradients(zip(grads, mixed.trainable_variables)) | ||
|
||
sac_loss.append(loss_fn(y_train, sac_vqc(X_train)).numpy()) | ||
sac_val_loss.append(loss_fn(y_test, sac_vqc(X_test)).numpy()) | ||
sac_cnn_loss.append(loss_fn(y_train, sac_cnn_vqc(X_train)).numpy()) | ||
sac_cnn_val_loss.append(loss_fn(y_test, sac_cnn_vqc(X_test)).numpy()) | ||
|
||
sac_enc = encoding(400, 2, d * 2, [1, 1, 2, 2] * d, sac_vqc.trainable_variables[0].numpy(), loss.numpy()) | ||
mlp_action, _ = sac_agent.predict(sac_enc) | ||
mixed_test.set_weights([mlp_action[:vqc.trainable_variables[0].shape[0]]]) | ||
mlp_loss = loss_fn(y_train, mixed_test(X_train)).numpy() | ||
sac_cnn_enc = cnn_enc(20, 20, 2, [1, 1, 2, 2] * d, sac_cnn_vqc.trainable_variables[0].numpy(), loss.numpy()) | ||
cnn_action, _ = sac_cnn_agent.predict(sac_cnn_enc) | ||
mixed_test.set_weights([cnn_action[:vqc.trainable_variables[0].shape[0]]]) | ||
cnn_loss = loss_fn(y_train, mixed_test(X_train)).numpy() | ||
|
||
losses = [mlp_loss, cnn_loss, loss_fn(y_train, mixed(X_train)).numpy()] | ||
best = losses.index(min(losses)) | ||
if best == 0: | ||
mixed.set_weights([mlp_action[:vqc.trainable_variables[0].shape[0]]]) | ||
elif best == 1: | ||
mixed.set_weights([cnn_action[:vqc.trainable_variables[0].shape[0]]]) | ||
|
||
mixed_loss.append(loss_fn(y_train, mixed(X_train)).numpy()) | ||
mixed_val_loss.append(loss_fn(y_test, mixed(X_test)).numpy()) | ||
|
||
cnn_mins_val.append(min(sac_cnn_val_loss)) | ||
cnn_mins_train.append(min(sac_cnn_loss)) | ||
mlp_mins_train.append(min(sac_loss)) | ||
mlp_mins_val.append(min(sac_val_loss)) | ||
mixed_mins_val.append(min(mixed_val_loss)) | ||
mixed_mins_train.append(min(mixed_loss)) | ||
grad_mins_train.append(min(history.history['loss'])) | ||
grad_mins_val.append(min(history.history['val_loss'])) | ||
|
||
print("Training") | ||
print("$", np.mean(mlp_mins_train), "\pm", np.std(mlp_mins_train), "$ & $", np.mean(cnn_mins_train), "\pm", np.std(cnn_mins_train), "$ & $",\ | ||
np.mean(grad_mins_train), "\pm", np.std(grad_mins_train), "$ & $", np.mean(mixed_mins_train), "\pm", np.std(mixed_mins_train), "$") | ||
print("Validation") | ||
print("$", np.mean(mlp_mins_val), "\pm", np.std(mlp_mins_val), "$ & $", np.mean(cnn_mins_val), "\pm", np.std(cnn_mins_val), "$ & $",\ | ||
np.mean(grad_mins_val), "\pm", np.std(grad_mins_val), "$ & $", np.mean(mixed_mins_val), "\pm", np.std(mixed_mins_val), "$") |