forked from meituan/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add chinese version readme document.
- Loading branch information
Showing
1 changed file
with
238 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
<p align="center"> | ||
<img src="assets/banner-YOLO.png" align="middle" width = "1000" /> | ||
</p> | ||
|
||
简体中文 | [English](README.md) | ||
|
||
## YOLOv6 | ||
|
||
官方论文: [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976) | ||
|
||
<p align="center"> | ||
<img src="assets/speed_comparision_v2.png" align="middle" width = "1000" /> | ||
</p> | ||
|
||
YOLOv6 提供了一系列面向各种工业应用场景的模型,包括微小级(nano),极小极(tiny)、小(small),中(medium),大模型(large)。为更好的实现精度和速度权衡,这些模型的结构会根据模型大小而有所不同。此外,我们还引入了一些策略和技巧方法来进一步提高性能,例如自蒸馏和更多的训练轮次,这些策略和技巧并不会增加模型推理延时。在工业部署时,我们采用通道蒸馏和图优化的量化感知训练来实现极致的推理性能。 | ||
|
||
YOLOv6-N 在 COCO 数据集上的 mAP 为 35.9% ,在 T4 显卡推理速度可达 1234 FPS。 YOLOv6-S 的 mAP 为 43.5%,推理速度为 495 FPS ,量化后的 YOLOv6-S 模型在 T4显卡 上的 FPS 可以加速到 869,mAP 为 43.3% 。 YOLOv6-T/M/L 也具有出色的性能,与其他检测器相比,我们的模型在基本相同的推理速度时,可以达到更高的精度。 | ||
|
||
## 本次更新 | ||
|
||
- 发布了 M/L 模型,并且进一步提高了 N/T/S 模型的性能;⭐️ [精度指标](#Benchmark) | ||
- 将训练速度提高了2倍; | ||
- 修复了 640x640 分辨率推理时性能下降的问题; | ||
- 定制化的模型量化加速方法; 🚀 [量化教程](./tools/qat/README.md) | ||
|
||
## 模型指标 | ||
| 模型 | 输入尺寸 | mAP<sup>val<br/>0.5:0.95 | 速度<sup>T4<br/>trt fp16 b1 <br/>(fps) | 速度<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) | | ||
| :----------------------------------------------------------- | ---- | :------------------------------------ | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- | | ||
| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6n.pt) | 640 | 35.9<sup>300e</sup><br/>36.3<sup>400e | 802 | 1234 | 4.3 | 11.1 | | ||
| [**YOLOv6-T**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6t.pt) | 640 | 40.3<sup>300e</sup><br/>41.1<sup>400e | 449 | 659 | 15.0 | 36.7 | | ||
| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s.pt) | 640 | 43.5<sup>300e</sup><br/>43.8<sup>400e | 358 | 495 | 17.2 | 44.2 | | ||
| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6m.pt) | 640 | 49.5 | 179 | 233 | 34.3 | 82.2 | | ||
| [**YOLOv6-L-ReLU**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l_relu.pt) | 640 | 51.7 | 113 | 149 | 58.5 | 144.0 | | ||
| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l.pt) | 640 | 52.5 | 98 | 121 | 58.5 | 144.0 | | ||
|
||
|
||
### 量化模型 🚀 | ||
|
||
| 模型 | 输入尺寸 | 精度 | mAP<sup>val<br/>0.5:0.95 | 速度<sup>T4<br/>trt b1 <br/>(fps) | 速度<sup>T4<br/>trt b32 <br/>(fps) | | ||
| :-------------------- | ---- | --------- | :----------------------- | ---------------------------------- | ----------------------------------- | | ||
| **YOLOv6-N RepOpt** | 640 | INT8 | 34.8 | 1114 | 1828 | | ||
| **YOLOv6-N** | 640 | FP16 | 35.9 | 802 | 1234 | | ||
| **YOLOv6-T RepOpt** | 640 | INT8 | 39.8 | 741 | 1167 | | ||
| **YOLOv6-T** | 640 | FP16 | 40.3 | 449 | 659 | | ||
| **YOLOv6-S RepOpt** | 640 | INT8 | 43.3 | 619 | 924 | | ||
| **YOLOv6-S** | 640 | FP16 | 43.5 | 377 | 541 | | ||
|
||
- 速度是在 T4 上测试的,TensorRT 版本为 8.4 ; | ||
- 精度是在训练 300 epoch 的模型上测试的; | ||
- mAP 和速度指标是在 [COCO val2017](https://cocodataset.org/#download) 数据集上评估的,输入分辨率为 640×640; | ||
- 复现 YOLOv | ||
6 的速度指标,请查看 [速度测试](./docs/Test_speed.md) 教程; | ||
- YOLOv6 的参数和计算量是在推理模式下计算的; | ||
|
||
<details> | ||
<summary>旧版模型</summary> | ||
|
||
| 模型 | 输入尺寸 | mAP<sup>val<br/>0.5:0.95 | 速度<sup>V100<br/>fp16 b32 <br/>(ms) | 速度<sup>V100<br/>fp32 b32 <br/>(ms) | 速度<sup>T4<br/>trt fp16 b1 <br/>(fps) | 速度<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) | | ||
| :-------------- | ----------- | :----------------------- | :------------------------------------ | :------------------------------------ | ---------------------------------------- | ----------------------------------------- | --------------- | -------------- | | ||
| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6n.pt) | 416<br/>640 | 30.8<br/>35.0 | 0.3<br/>0.5 | 0.4<br/>0.7 | 1100<br/>788 | 2716<br/>1242 | 4.3<br/>4.3 | 4.7<br/>11.1 | | ||
| [**YOLOv6-T**](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6t.pt) | 640 | 41.3 | 0.9 | 1.5 | 425 | 602 | 15.0 | 36.7 | | ||
| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6s.pt) | 640 | 43.1 | 1.0 | 1.7 | 373 | 520 | 17.2 | 44.2 | | ||
|
||
|
||
</details> | ||
|
||
|
||
## 快速开始 | ||
|
||
<details> | ||
<summary> 安装</summary> | ||
|
||
|
||
```shell | ||
git clone https://github.com/meituan/YOLOv6 | ||
cd YOLOv6 | ||
pip install -r requirements.txt | ||
``` | ||
</details> | ||
|
||
<details open> | ||
<summary> 训练 </summary> | ||
|
||
单卡 | ||
|
||
```shell | ||
python tools/train.py --batch 32 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --device 0 | ||
``` | ||
|
||
多卡 (我们推荐使用 DDP 模式) | ||
|
||
```shell | ||
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --device 0,1,2,3,4,5,6,7 | ||
``` | ||
|
||
|
||
- conf: 配置文件路径,里面包含网络结构、优化器配置、超参数信息。如果您是在自己的数据集训练,我们推荐您在配置文件中填写`pretrained`模型的路径。 | ||
- data: 数据集配置文件,以 COCO 数据集为例,您可以在 [COCO](http://cocodataset.org) 下载数据, 在这里下载 [YOLO 格式标签](https://github.com/meituan/YOLOv6/releases/download/0.1.0/coco2017labels.zip) 。 | ||
- 确保您的数据集按照下面这种格式来组织: | ||
``` | ||
├── coco | ||
│ ├── annotations | ||
│ │ ├── instances_train2017.json | ||
│ │ └── instances_val2017.json | ||
│ ├── images | ||
│ │ ├── train2017 | ||
│ │ └── val2017 | ||
│ ├── labels | ||
│ │ ├── train2017 | ||
│ │ ├── val2017 | ||
``` | ||
|
||
|
||
<details> | ||
<summary>在COCO数据集复现我们的结果 ⭐️</summary> | ||
|
||
Nano 模型 | ||
```shell | ||
python -m torch.distributed.launch --nproc_per_node 4 tools/train.py \ | ||
--batch 128 \ | ||
--conf configs/yolov6n.py \ | ||
--data data/coco.yaml \ | ||
--epoch 400 \ | ||
--device 0,1,2,3 \ | ||
--name yolov6n_coco | ||
``` | ||
|
||
Tiny 和 Small 模型 | ||
```shell | ||
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \ | ||
--batch 256 \ | ||
--conf configs/yolov6s.py \ # configs/yolov6t.py | ||
--data data/coco.yaml \ | ||
--epoch 400 \ | ||
--device 0,1,2,3,4,5,6,7 \ | ||
--name yolov6s_coco # yolov6t_coco | ||
``` | ||
|
||
Medium 和 Large 模型 | ||
```shell | ||
# Step 1: Training a base model | ||
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \ | ||
--batch 256 \ | ||
--conf configs/yolov6m.py \ # configs/yolov6l.py | ||
--data data/coco.yaml \ | ||
--epoch 300 \ | ||
--device 0,1,2,3,4,5,6,7 \ | ||
--name yolov6m_coco # yolov6l_coco | ||
|
||
|
||
# Step 2: Self-distillation training | ||
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \ | ||
--batch 256 \ # 128 for distillation of yolov6l | ||
--conf configs/yolov6m.py \ # configs/yolov6l.py | ||
--data data/coco.yaml \ | ||
--epoch 300 \ | ||
--device 0,1,2,3,4,5,6,7 \ | ||
--distill \ | ||
--teacher_model_path runs/train/yolov6m_coco/weights/best_ckpt.pt \ # # yolov6l_coco | ||
--name yolov6m_coco # yolov6l_coco | ||
|
||
``` | ||
</details> | ||
|
||
<details> | ||
<summary>恢复训练</summary> | ||
|
||
|
||
如果您的训练进程中断了,您可以这样恢复先前的训练进程。 | ||
``` | ||
# 多卡训练. | ||
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --resume | ||
``` | ||
您也可以通过 `--resume` 参数指定要恢复的模型路径 | ||
``` | ||
# 记得把 /path/to/your/checkpoint/path 替换为您要恢复训练的模型权重路径 | ||
--resume /path/to/your/checkpoint/path | ||
``` | ||
</details> | ||
</details> | ||
|
||
<details> | ||
<summary> 评估</summary> | ||
在 COCO val2017 数据集上复现我们的结果(输入分辨率 640x640) ⭐️ | ||
|
||
```shell | ||
python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s.pt --task val --reproduce_640_eval | ||
``` | ||
- verbose: 如果要打印每一类的精度信息,请设置为 True ; | ||
- do_coco_metric: 设置 True / False 来打开或关闭 pycocotools 的评估; | ||
- do_pr_metric: 设置 True / False 来显示或不显示精度和召回的指标 ; | ||
- config-file: 指定一个包含所有评估参数的配置文件,例如 [yolov6n_with_eval_params.py](configs/experiment/yolov6n_with_eval_params.py) | ||
</details> | ||
|
||
|
||
<details> | ||
<summary>推理</summary> | ||
|
||
首先,从 [release页面](https://github.com/meituan/YOLOv6/releases/tag/0.2.0) 下载一个训练好的模型权重文件,或选择您自己训练的模型; | ||
|
||
然后,通过 `tools/infer.py`文件进行推理。 | ||
|
||
```shell | ||
python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir / video.mp4 | ||
``` | ||
</details> | ||
|
||
<details> | ||
<summary> 部署 </summary> | ||
|
||
* [ONNX](./deploy/ONNX) | ||
* [OpenCV Python/C++](./deploy/ONNX/OpenCV) | ||
* [OpenVINO](./deploy/OpenVINO) | ||
* [TensorRT](./deploy/TensorRT) | ||
</details> | ||
|
||
<details open> | ||
<summary> 教程 </summary> | ||
|
||
* [训练自己的数据集](./docs/Train_custom_data.md) | ||
* [测速](./docs/Test_speed.md) | ||
* [ YOLOv6 量化教程](./docs/Tutorial%20of%20Quantization.md) | ||
</details> | ||
|
||
|
||
<details> | ||
<summary> 第三方资源 </summary> | ||
|
||
* YOLOv6 NCNN Android app demo: [ncnn-android-yolov6](https://github.com/FeiGeChuanShu/ncnn-android-yolov6) from [FeiGeChuanShu](https://github.com/FeiGeChuanShu) | ||
* YOLOv6 ONNXRuntime/MNN/TNN C++: [YOLOv6-ORT](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/ort/cv/yolov6.cpp), [YOLOv6-MNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_yolov6.cpp) and [YOLOv6-TNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_yolov6.cpp) from [DefTruth](https://github.com/DefTruth) | ||
* YOLOv6 TensorRT Python: [yolov6-tensorrt-python](https://github.com/Linaom1214/TensorRT-For-YOLO-Series) from [Linaom1214](https://github.com/Linaom1214) | ||
* YOLOv6 TensorRT Windows C++: [yolort](https://github.com/zhiqwang/yolov5-rt-stack/tree/main/deployment/tensorrt-yolov6) from [Wei Zeng](https://github.com/Wulingtian) | ||
* [YOLOv6 web demo](https://huggingface.co/spaces/nateraw/yolov6) on [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/nateraw/yolov6) | ||
* 教程: [如何用 YOLOv6 训练自己的数据集](https://blog.roboflow.com/how-to-train-yolov6-on-a-custom-dataset/) <a href="https://colab.research.google.com/drive/1YnbqOinBZV-c9I7fk_UL6acgnnmkXDMM"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | ||
* YOLOv6 在 Google Colab 上的推理 Demo [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mahdilamb/YOLOv6/blob/main/inference.ipynb) | ||
</details> | ||
|
||
### [FAQ(持续更新)](https://github.com/meituan/YOLOv6/wiki/FAQ%EF%BC%88Continuously-updated%EF%BC%89) |