* model: add kernel_regularizer argument
* tf: remove subdivision
* tf: dataset: fix issue where coordinates become 0 due to repeated division
* tf: dataset: modify to shuffle when augmentation
* tf: train: modify order of declaration
* tf: train: give xiou_loss to more weight
* tf: train: use keras.losses.BinaryCrossentropy to avoid nan problem
* tf: train: add verbose argument
* tf: dataset: change converted_coco format
* tf: add image_path_prefix argument to load_dataset()
* tf: add loss_verbose argument to compile()
* tf: reflect dataset format change to save_dataset_for_mAP()