Tags: paradigmn/tensorflow-yolov4
Tags
CHANGELOG * tf:dataset: add data format check * common: base_class: change input_size from integer to (width, height) * common: base_class: set default arguments for candidates_to_pred_bboxes * tf: dataset: modify variable initialization according to input_size type change * common: predict: reflect input_size type change * common: media: reflect input_size type change to resize_image * tf:dataset: reflect input_size type change to data augmentation * common: base_class: reflect predict.fit_pred_bboxes_to_original change * common: predict: fix problem that occurred because image size change was not considered * tf: reflect input_size type change * model: head: reflect input_size type change * tf: train: reflect input_size type change * common: base_class: change strides to immutable constant * common: base_class: add cap.release() to release resources * tflite: reflect input_size type change * tf: optimize predict() using @tf.function * common: predict: fix problem caused by incorrect iou calculation
CHANGELOG * tf: set num_sample to the number of dataset, if not specified * tf: modify to bring images in order on post-training * common: base_class: add iou/score_threshold argument * tf: add images_optional argument in save_dataset_for_mAP() * common: base_class: modify to call cv2.namedWindow once * common: media: modify to create colors once * tf: dataset: update docs
CHANGELOG * model: remove tpu argument * tf: reflect model changes * tflite: remove tpu_hair * tf, tflite: move inference into BaseClass * model: yolov4: remove unused import * pylint: update .pylintrc * common: base_class: modify inference() to be able to use cam * common: base_class: add fps display to screen
CHANGELOG * model: add kernel_regularizer argument * tf: remove subdivision * tf: dataset: fix issue where coordinates become 0 due to repeated division * tf: dataset: modify to shuffle when augmentation * tf: train: modify order of declaration * tf: train: give xiou_loss to more weight * tf: train: use keras.losses.BinaryCrossentropy to avoid nan problem * tf: train: add verbose argument * tf: dataset: change converted_coco format * tf: add image_path_prefix argument to load_dataset() * tf: add loss_verbose argument to compile() * tf: reflect dataset format change to save_dataset_for_mAP()
CHANGELOG * tf: add TFLITE_BUILTINS, SELECT_TF_OPS to default supported_ops * tf: dataset: modify to check if image exists when creating a dataset * tf: dataset: remove preprocess_dataset * tf: dataset: add cut_out * tf: dataset: add _next_random_augmentation_data() * tf: dataset: add mix_up * tf: dataset: implement mosaic
PreviousNext